Displaying all 3 publications

Abstract:
Sort:
  1. Ku CS, Teo SM, Naidoo N, Sim X, Teo YY, Pawitan Y, et al.
    J Hum Genet, 2011 Aug;56(8):552-60.
    PMID: 21677662 DOI: 10.1038/jhg.2011.54
    Copy number variations can be identified using newer genotyping arrays with higher single nucleotide polymorphisms (SNPs) density and copy number probes accompanied by newer algorithms. McCarroll et al. (2008) applied these to the HapMap II samples and identified 1316 copy number polymorphisms (CNPs). In our study, we applied the same approach to 859 samples from three Singapore populations and seven HapMap III populations. Approximately 50% of the 1291 autosomal CNPs were found to be polymorphic only in populations of non-African ancestry. Pairwise comparisons among the 10 populations showed substantial differences in the CNPs frequencies. Additionally, 698 CNPs showed significant differences with false discovery rate (FDR)<0.01 among the 10 populations and these loci overlap with known disease-associated or pharmacogenetic-related genes such as CFHR3 and CFHR1 (age related macular degeneration), GSTTI (metabolism of various carcinogenic compounds and cancers) and UGT2B17 (prostate cancer and graft-versus-host disease). The correlations between CNPs and genome-wide association studies-SNPs were investigated and several loci, which were previously unreported, that may potentially be implicated in complex diseases and traits were found; for example, childhood acute lymphoblastic leukaemia, age-related macular degeneration, breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes. Additionally, we also found 5014 novel copy number loci that have not been reported previously by McCarroll et al. (2008) in the 10 populations.
  2. Sartelli M, Kluger Y, Ansaloni L, Hardcastle TC, Rello J, Watkins RR, et al.
    World J Emerg Surg, 2018;13:6.
    PMID: 29416555 DOI: 10.1186/s13017-018-0165-6
    The Global Alliance for Infections in Surgery appreciates the great effort of the task force who derived and validated the Sepsis-3 definitions and considers the new definitions an important step forward in the evolution of our understanding of sepsis. Nevertheless, more than a year after their publication, we have a few concerns regarding the use of the Sepsis-3 definitions.
  3. Sartelli M, Abu-Zidan FM, Labricciosa FM, Kluger Y, Coccolini F, Ansaloni L, et al.
    World J Emerg Surg, 2019;14:34.
    PMID: 31341511 DOI: 10.1186/s13017-019-0253-2
    Background: Timing and adequacy of peritoneal source control are the most important pillars in the management of patients with acute peritonitis. Therefore, early prognostic evaluation of acute peritonitis is paramount to assess the severity and establish a prompt and appropriate treatment. The objectives of this study were to identify clinical and laboratory predictors for in-hospital mortality in patients with acute peritonitis and to develop a warning score system, based on easily recognizable and assessable variables, globally accepted.

    Methods: This worldwide multicentre observational study included 153 surgical departments across 56 countries over a 4-month study period between February 1, 2018, and May 31, 2018.

    Results: A total of 3137 patients were included, with 1815 (57.9%) men and 1322 (42.1%) women, with a median age of 47 years (interquartile range [IQR] 28-66). The overall in-hospital mortality rate was 8.9%, with a median length of stay of 6 days (IQR 4-10). Using multivariable logistic regression, independent variables associated with in-hospital mortality were identified: age > 80 years, malignancy, severe cardiovascular disease, severe chronic kidney disease, respiratory rate ≥ 22 breaths/min, systolic blood pressure < 100 mmHg, AVPU responsiveness scale (voice and unresponsive), blood oxygen saturation level (SpO2) < 90% in air, platelet count < 50,000 cells/mm3, and lactate > 4 mmol/l. These variables were used to create the PIPAS Severity Score, a bedside early warning score for patients with acute peritonitis. The overall mortality was 2.9% for patients who had scores of 0-1, 22.7% for those who had scores of 2-3, 46.8% for those who had scores of 4-5, and 86.7% for those who have scores of 7-8.

    Conclusions: The simple PIPAS Severity Score can be used on a global level and can help clinicians to identify patients at high risk for treatment failure and mortality.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links