Displaying all 3 publications

Abstract:
Sort:
  1. Okuno S, Yin T, Nanami S, Matsuyama S, Kamiya K, Tan S, et al.
    Ecol Evol, 2022 Nov;12(11):e9536.
    PMID: 36440315 DOI: 10.1002/ece3.9536
    Community phylogenetic analysis is an effective approach to understanding the process of community formation. The phylogenetic tree of the species pool is reconstructed in the first step, and the phylogenetic tree obtained in the second step is used to analyze phylogenetic diversity. Sythetic trees have often been used in the construction of phylogenentic trees; however, in tropical rainforests with many closely related species, synthetic trees contain many unresolved nodes, which may affect the results of phylogenetic structure analysis. Here, we constructed a phylogenetic tree using DNA barcode sequences (rbcL, matK, trnH-psbA) for 737 tree species from the rainforests of Borneo, which have a high-species diversity and many closely related species. The phylogenetic tree had fewer polytomies and more branch length variations than the Phylocom synthetic trees. Comparison of community phylogenetic analyses indicated that values of the standardized effect size of mean pairwise distance (SES-MPD) were highly correlated between Phylocom and DNA barcode trees, but less so for the standardized effect size of mean nearest taxon distance (SES-MNTD), suggesting that caution is needed when using synthetic trees for communities containing many congeneric species, especially when using SES-MNTD. Simulation analysis suggested that spatial dependence on phylogenetic diversity is related to the phylogenetic signal of the species' habitat niche and the spatial structure of habitat, indicating the importance of detailed phylogeny in understanding community assembly processes.
  2. Smith JR, Ghazoul J, Burslem DFRP, Itoh A, Khoo E, Lee SL, et al.
    PLoS One, 2018;13(3):e0193501.
    PMID: 29547644 DOI: 10.1371/journal.pone.0193501
    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.
  3. Ito N, Iwanaga H, Charles S, Diway B, Sabang J, Chong L, et al.
    Genes Genet Syst, 2017 Sep 12;92(1):1-20.
    PMID: 28003572 DOI: 10.1266/ggs.16-00013
    Geographical variation in soil bacterial community structure in 26 tropical forests in Southeast Asia (Malaysia, Indonesia and Singapore) and two temperate forests in Japan was investigated to elucidate the environmental factors and mechanisms that influence biogeography of soil bacterial diversity and composition. Despite substantial environmental differences, bacterial phyla were represented in similar proportions, with Acidobacteria and Proteobacteria the dominant phyla in all forests except one mangrove forest in Sarawak, although highly significant heterogeneity in frequency of individual phyla was detected among forests. In contrast, species diversity (α-diversity) differed to a much greater extent, being nearly six-fold higher in the mangrove forest (Chao1 index = 6,862) than in forests in Singapore and Sarawak (~1,250). In addition, natural mixed dipterocarp forests had lower species diversity than acacia and oil palm plantations, indicating that aboveground tree composition does not influence soil bacterial diversity. Shannon and Chao1 indices were correlated positively, implying that skewed operational taxonomic unit (OTU) distribution was associated with the abundance of overall and rare (singleton) OTUs. No OTUs were represented in all 28 forests, and forest-specific OTUs accounted for over 70% of all detected OTUs. Forests that were geographically adjacent and/or of the same forest type had similar bacterial species composition, and a positive correlation was detected between species divergence (β-diversity) and direct distance between forests. Both α- and β-diversities were correlated with soil pH. These results suggest that soil bacterial communities in different forests evolve largely independently of each other and that soil bacterial communities adapt to their local environment, modulated by bacterial dispersal (distance effect) and forest type. Therefore, we conclude that the biogeography of soil bacteria communities described here is non-random, reflecting the influences of contemporary environmental factors and evolutionary history.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links