Displaying all 3 publications

Abstract:
Sort:
  1. Abe N, Ito T, Ohguchi K, Nasu M, Masuda Y, Oyama M, et al.
    J Nat Prod, 2010 Sep 24;73(9):1499-506.
    PMID: 20735051 DOI: 10.1021/np1002675
    Five new stilbenoids, vatalbinosides A-E (1-5), and 13 known compounds (6-18) were isolated from the stem of Vatica albiramis. The effects of these new compounds on interleukin-1β-induced production of matrix metalloproteinase-1 (MMP-1) in human dermal fibroblasts were examined. Three resveratrol tetramers, (-)-hopeaphenol (6), vaticanol C (13), and stenophyllol C (14), were identified as strong inhibitors of MMP-1 production.
  2. Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, et al.
    Biomaterials, 2020 02;230:119638.
    PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638
    Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
  3. Chen LH, Sung TC, Lee HH, Higuchi A, Su HC, Lin KJ, et al.
    Biomater Sci, 2019 Aug 14.
    PMID: 31411209 DOI: 10.1039/c9bm00418a
    Recombinant vitronectin-grafted hydrogels were developed by adjusting surface charge of the hydrogels with grafting of poly-l-lysine for optimal culture of human embryonic stem cells (hESCs) under xeno- and feeder-free culture conditions, with elasticity regulated by crosslinking time (10-30 kPa), in contrast to conventional recombinant vitronectin coating dishes, which have a fixed stiff surface (3 GPa). hESCs proliferated on the hydrogels for over 10 passages and differentiated into the cells derived from three germ layers indicating the maintenance of pluripotency. hESCs on the hydrogels differentiated into cardiomyocytes under xeno-free culture conditions with much higher efficiency (80% of cTnT+ cells) than those on conventional recombinant vitronectin or Matrigel-coating dishes just only after 12 days of induction. It is important to have an optimal design of cell culture biomaterials where biological cues (recombinant vitronectin) and physical cues (optimal elasticity) are combined for high differentiation of hESCs into specific cell lineages, such as cardiomyocytes, under xeno-free and feeder-free culture conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links