Displaying all 2 publications

Abstract:
Sort:
  1. Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M
    Heliyon, 2024 Jan 15;10(1):e23952.
    PMID: 38192781 DOI: 10.1016/j.heliyon.2023.e23952
    Active packaging is becoming increasingly significant in the food industry. The present study aims to explore the use of Syzygium Cumini Seed Extract (SCSE) as an antioxidant and chitosan as an antibacterial agent to produce active packaging based on polylactic acid (PLA), poly ε-caprolactone (PCL), and polyethylene glycol (PEG) blend. Using advanced characterization techniques, active packaging (PLA/PCL/PEG) incorporating with 0.5 g chitosan-0.5 mL SCSE was evaluated for its mechanical, physical, structural, and antibacterial-antioxidant properties. The addition of chitosan-SCSE caused an 18.57 % increase in tensile strength and decreased the Water Vapor Transmission Rate (WVTR) by up to 52 %, whereas smooth surface microscopy indicated good compatibility between polymers and active agents. Active packaging incorporating chitosan-SCSE reduced 96.66 % of Gram-positive bacteria Staphylococcus aureus and 73.98 % of Gram-negative bacteria, Escherichia coli. During 15 days of storage, the active packaging was able to slow the increase in Total Volatile Basic Nitrogen (TVBN) in beef and prevent the decrease in vitamin C contents in pineapple.
  2. Abdullah CK, Ismail I, Nurul Fazita MR, Olaiya NG, Nasution H, Oyekanmi AA, et al.
    Polymers (Basel), 2021 May 17;13(10).
    PMID: 34067604 DOI: 10.3390/polym13101615
    The effect of incorporating different loadings of oil palm bio-ash nanoparticles from agriculture waste on the properties of phenol-formaldehyde resin was investigated in this study. The bio-ash filler was used to enhance the performance of phenol-formaldehyde nanocomposites. Phenol-formaldehyde resin filled with oil palm bio-ash nanoparticles was prepared via the in-situ polymerization process to produce nanocomposites. The transmission electron microscope and particle size analyzer result revealed that oil palm bio-ash nanoparticles had a spherical geometry of 90 nm. Furthermore, X-ray diffraction results confirmed the formation of crystalline structure in oil palm bio-ash nanoparticles and phenol-formaldehyde nanocomposites. The thermogravimetric analysis indicated that the presence of oil palm bio-ash nanoparticles enhanced the thermal stability of the nanocomposites. The presence of oil palm bio-ash nanoparticles with 1% loading in phenol-formaldehyde resin enhanced the internal bonding strength of plywood composites. The scanning electron microscope image revealed that phenol-formaldehyde nanocomposites morphology had better uniform distribution and dispersion with 1% oil palm bio-ash nanoparticle loading than other phenol-formaldehyde nanocomposites produced. The nanocomposite has potential use in the development of particle and panel board for industrial applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links