Displaying all 4 publications

Abstract:
Sort:
  1. Nathan SA, Puthucheary SD
    Malays J Pathol, 2005 Jun;27(1):3-7.
    PMID: 16676686
    B. pseudomallei has been shown to persist intracellularly in melioidosis patients until reactivated by decreasing immunocompetence. We have shown by transmission electron microscopy the internalization of B. pseudomallei by human macrophages via conventional phagocytosis enclosed within membrane-bound vacuoles or phagosomes. Ferritin labeled lysosomes provided evidence of phagosome-lysosome fusion. Ingested bacilli were designated as "intact" or "damaged" on the basis of their ultrastructural features. An intact bacterium was seen with low electron opaque central nuclear region surrounded by dense bacterial cytoplasm, bounded externally by bacterial plasma membrane and cell wall. In contrast, B. pseudomallei were considered damaged when seen with cavitation within the central nuclear region, separation of bacterial cytoplasm from the cell wall, herniation of cytoplasmic contents and lamination of bacterial cell wall and its surrounding electron transparent zone. Our observations indicate that the microbicidal mechanism(s) in B. pseudomallei-infected macrophages failed to ensure complete clearance of the organism and this failure probably facilitates intracellular persistence and proliferation, and this may be one of the survival strategies adopted by this organism.
  2. Puthucheary SD, Nathan SA
    Singapore Med J, 2008 Feb;49(2):117-20.
    PMID: 18301838
    Oxidative stress can occur in sepsis and infection, when overproduction of free radicals is not countered by the host antioxidant system, leading to impairment of host cellular functions. Various disease states are accompanied by the accumulation of 15-F2t-IsoP in biological fluids. These isoprostanes are considered as markers of oxidative stress, and inflammation and inflammatory mediators.
  3. Puthucheary SD, Nathan SA
    Singapore Med J, 2006 Aug;47(8):697-703.
    PMID: 16865211
    Burkholderia pseudomallei (B. pseudomallei) has been shown to persist intracellularly in patients with melioidosis, until reactivated by decreasing immunocompetence. We have previously demonstrated by transmission electron microscopy, the internalisation of B. pseudomallei by human macrophages and the occurrence of phagosome-lysosome fusion.
  4. Nathan SA, Qvist R, Puthucheary SD
    FEMS Immunol. Med. Microbiol., 2005 Feb 1;43(2):177-83.
    PMID: 15681148
    The oxidative response of Burkholderia pseudomallei and Escherichia coli infected macrophages from normal and melioidosis subjects was determined by measuring the production of nitric oxide which is one of the reactive nitrogen intermediates, and the activation state of these macrophages was determined by measuring the generation of 8-iso-PGF(2alpha), a bioactive product of free radical induced lipid peroxidation. Macrophages obtained from the melioidosis patients generated significantly lower levels of nitric oxide and 8-iso-PGF(2alpha) compared to macrophages obtained from the normal subjects (P<0.001). The reduced efficiency of the oxygen dependent microbicidal mechanism in macrophages of melioidosis patients may be one of the survival strategies developed by B. pseudomallei to remain viable intracellularly.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links