This study was carried out to determine the proximate, functional and pasting properties of breadfruit starch. Breadfruit starch was isolated from matured breadfruit (Artocarpus altilis) and was analyzed for its fuctional, proximate and pasting properties. The starch contains 10.83%, 0.53%, 0.39%, 22.52%, 77.48% and 1.77% moisture, crude protein, fat, amylose, amylopectin and ash contents respectively. The average particle size, pH, bulk density and dispersibility of the breadfruit starch were 18 μm, 6.5, 0.673 g/mls, and 40.67% respectively. The swelling power of the breadfruit starch increases with increase in temperature, but there was a rapid increase in the swelling power from 70 to 80 0C. The pasting temperature of the starch paste was 84.05 0C, setback and breakdown values were 40.08 and 7.92 RVU respectively. The peak viscosity value was 121.25 RVU while final viscosity value was 153.42 RVU. This study concluded that breadfruit starch has an array of functional, pasting and proximate properties that can facilitate its use in so many areas where the properties of other starches are acceptable.
This study was carried out to extract and compare the characteristic ability of globulins from cottonseed, alfalfa seed, pea seed, mung bean and French bean with cocoa seeds to produce cocoa-specific aroma precursors. The extracted globulins were compared through SDS PAGE, amino acid and oligopeptide profiles. A very low recovery was obtained during globulin extraction from different seeds ranging from 0.5% to 2.7%. Cottonseed produced the highest total protein (13.90 mg/g), followed by cocoa seed (11.91 mg/g), whereas alfalfa seed, mung bean, pea seed and French bean produced 7.86, 4.77, 4.59 and 3.89 mg/g respectively. Two distinctive bands of 51.1 and 33.0 kDa were observed for cocoa vicilin-class globulin (VCG) from SDS PAGE. More than three bands were shown for other seed globulins. Comparative HPLC analyses of the obtained peptide mixtures revealed different and complex patterns of predominantly hydrophobic peptides. A similar high content of amides (glutamic acids-glutamine, aspartic acid- asparagine and arginine) and low concentrations of lysine were observed in all seeds globulin.
Proximate compositions, culinary and sensory properties of noodles prepared from proportionate combinations of breadfruit starch and wheat flour were investigated. Breadfruit starch (BS) isolated from matured breadfruit (Artocarpus altilis) was used to produce noodles in combination with hard red wheat flour (WF) at a ratio of 100% WF:0% BS, 80% WF:20% BS, 60% WF:40% BS, 40% WF:60% BS, 20% WF:80% BS. The protein, fat, ash, crude fibre and moisture contents of the Breadfruit starch-Wheat flour (BSWF) noodles prepared from the above blends ranged from 0.65 to 10.88%, 0.35 to 3.15%, 1.28 to 2.25%, 1.18 to 1.45% and 4.65 to 5.45%, respectively. The contents of protein, fat, ash and crude fibre increased as the percentage breadfruit starch decreased. However, values of moisture content did not follow the same trend, instead higher values were found for 100% BS:0% WF (5.35%) and 20% BS:80% WF (5.45%). The cooking yield of the BSWF noodles ranged from 21.02 (60% BS:40% WF) to 23.75 g (100% BS:0% WF), cooking loss ranged from 5.49 (20% BS:80% WF) to 9.19% (100% BS:0% WF), while swelling index ranged from 3.1 (20% BS:80% WF) to 3.4 (100% BS:0% WF). Throughout the study, noodles produced from blends of 20% breadfruit starch and 80% wheat flour showed superior proximate, culinary and sensory attributes.
Marine fungi are potential source of bioactive compounds as indicated by the increasing statistic
of research findings. However similar research in Malaysia is still lacking. Hence, this study
is undertaken to determine the antibacterial activity of four marine fungal isolates (PR1T4,
PP2L4, PR3T13 and PR5T4) from Pulau Redang and Pulau Payar Marine Parks, Malaysia
against Salmonella Typhi, Listeria monocytogenes, Staphylococcus aureus, and Escherichia
coli. Fungal isolates were first macroscopically and microscopically characterized and later
molecularly identified as Penicillium citrinum, Sacroladium strictum, Aspergillus sydowii and
Aspergillus sp. respectively. Solid and broth fermentation of fungi were carried out to produce
crude extracts and these extracts were screened for antibacterial activity. In general, solid
fermentation extracts (SFE) showed significantly higher antibacterial activity (p