Displaying all 5 publications

Abstract:
Sort:
  1. Tan KK, Nellis S, Zulkifle NI, Sulaiman S, AbuBakar S
    Epidemiol Infect, 2018 10;146(13):1635-1641.
    PMID: 29860959 DOI: 10.1017/S0950268818001425
    Dengue virus type 3 genotype III (DENV-3/III) is widely distributed in most dengue-endemic regions. It emerged in Malaysia in 2008 and autochthonously spread in the midst of endemic DENV-3/I circulation. The spread, however, was limited and the virus did not cause any major outbreak. Spatiotemporal distribution study of DENV-3 over the period between 2005 and 2011 revealed that dengue cases involving DENV-3/III occurred mostly in areas without pre-existing circulating DENV-3. Neutralisation assays performed using sera of patients with the respective infection showed that the DENV-3/III viruses can be effectively neutralised by sera of patients with DENV-3 infection (50% foci reduction neutralisation titres (FRNT50) > 1300). Sera of patients with DENV-1 infection (FRNT50 ⩾ 190), but not sera of patients with DENV-2 infection (FRNT50 ⩽ 50), were also able to neutralise the virus. These findings highlight the possibility that the pre-existing homotypic DENV-3 and the cross-reacting heterotypic DENV-1 antibody responses could play a role in mitigating a major outbreak involving DENV-3/III in the Klang Valley, Malaysia.
  2. Nellis S, Loong SK, Abd-Jamil J, Fauzi R, AbuBakar S
    Geospat Health, 2021 11 03;16(2).
    PMID: 34730321 DOI: 10.4081/gh.2021.1008
    Dengue is a complex disease with an increasing number of infections worldwide. This study aimed to analyse spatiotemporal dengue outbreaks using geospatial techniques and examine the effects of the weather on dengue outbreaks in the Klang Valley area, Kuala Lumpur, Malaysia. Daily weather variables including rainfall, temperature (maximum and minimum) and wind speed were acquired together with the daily reported dengue cases data from 2001 to 2011 and converted into geospatial format to identify whether there was a specific pattern of the dengue outbreaks. The association between these variables and dengue outbreaks was assessed using Spearman's correlation. The result showed that dengue outbreaks consistently occurred in the study area during a 11-year study period. And that the strongest outbreaks frequently occurred in two high-rise apartment buildings located in Kuala Lumpur City centre. The results also show significant negative correlations between maximum temperature and minimum temperature on dengue outbreaks around the study area as well as in the area of the high-rise apartment buildings in Kuala Lumpur City centre.
  3. Abd-Jamil J, Ngui R, Nellis S, Fauzi R, Lim ALY, Chinna K, et al.
    J Trop Med, 2020;2020:1019238.
    PMID: 32536945 DOI: 10.1155/2020/1019238
    Dengue is an endemic mosquito-borne viral disease prevalent in many urban areas of the tropic, especially the Southeast Asia. Its presence among the indigenous population of Peninsular Malaysia (Orang Asli), however, has not been well described. The present study was performed to investigate the seroprevalence of dengue among the Orang Asli (OA) residing at the forest fringe areas of Peninsular Malaysia and determine the factors that could affect the transmission of dengue among the OA. Eight OA communities consisting of 491 individuals were recruited. From the study, at least 17% of the recruited study participants were positive for dengue IgG, indicating past exposure to dengue. Analysis on the demographic and socioeconomic variables suggested that high seroprevalence of dengue was significantly associated with those above 13 years old and a low household income of less than MYR500 (USD150). It was also associated with the vast presence of residential areas and the presence of a lake. Remote sensing analysis showed that higher land surface temperatures and lower land elevations also contributed to higher dengue seroprevalence. The present study suggested that both demographic and geographical factors contributed to the increasing risk of contracting dengue among the OA living at the forest fringe areas of Peninsular Malaysia. The OA, hence, remained vulnerable to dengue.
  4. Nellis S, Thu M, Ismail MR, Barteit S, Gouwanda D, Bärnighausen T, et al.
    Lancet Planet Health, 2024 Apr;8 Suppl 1:S8.
    PMID: 38632923 DOI: 10.1016/S2542-5196(24)00073-1
    BACKGROUND: Heatwaves present health risks globally but there is limited evidence on how temperature perceptions affect activities. This study aimed to examine community perceptions of heat as a potential health hazard and ascertain the current heat protection measures of the residents of the South East Asia Community Observatory (SEACO) in Malaysia.

    METHODS: In this longitudinal study, we randomly selected community members aged between 18 and 70 years who resided in Segamat district of Johor state, Malaysia. Over 21 days, we conducted three home visits to each participant. During each visit, participants completed a questionnaire consisting of Likert scale, multiple choice, and free text questions and we collected quantitative and qualitative data. These inquiries assessed the participants' perception of heat as health threat, whether or not they took heat preventive measures, and the specific protective measures they routinely employed. Descriptive data analyses were conducted and patterns of protective measures were investigated.

    FINDINGS: Between March 29 and July 31, 2023, 120 participants (72 women and 48 men) completed 360 questionnaires over three home visits. Initially, 58% participants recognised heat hazards to daily activities, decreasing to 42% and 35% by visits 2 and 3. Participants took preventive measures throughout the day, which was consistently high between 1200 h and 1400 h, with 77% of participants taking preventive measures on visit 1, 82% on visit 2, and 82% on visit 3. Use of preventive measures was also high between 1400 h and 1730 h, with 77% using preventive measure on visit 1, 81% on visit 2, and 79% on visit 3. The most common protective measures were fans (used by 68-88% of participants), drinking more water (70-78% of participants), and resting (44-72% of participants). The least common were relocating to cooler places, removing clothes, and using wet towels (0-2·5%). Despite high temperatures, perceptions of heat risks decreased over time. Participants took basic protections, especially at midday, but improved literacy and affordable cooling options are needed to protect vulnerable rural populations.

    INTERPRETATION: Our findings underline the need to improve heat literacy and adaptation as only half of the population assessed perceived heat as a potential health hazard and practised limited heat protective measures. Addressing climate change and health necessitates fundamental behavioural changes on the part of individuals and communities, to protect them against the adverse effects of heat.

    FUNDING: Monash University Malaysia and Heidelberg Institute of Global Health, Heidelberg University.

  5. Barteit S, Colmar D, Nellis S, Thu M, Watterson J, Gouwanda D, et al.
    Front Public Health, 2023;11:1153149.
    PMID: 38125843 DOI: 10.3389/fpubh.2023.1153149
    BACKGROUND: Malaysia is projected to experience an increase in heat, rainfall, rainfall variability, dry spells, thunderstorms, and high winds due to climate change. This may lead to a rise in heat-related mortality, reduced nutritional security, and potential migration due to uninhabitable land. Currently, there is limited data regarding the health implications of climate change on the Malaysian populace, which hinders informed decision-making and interventions.

    OBJECTIVE: This study aims to assess the feasibility and reliability of using sensor-based devices to enhance climate change and health research within the SEACO health and demographic surveillance site (HDSS) in Malaysia. We will particularly focus on the effects of climate-sensitive diseases, emphasizing lung conditions like chronic obstructive pulmonary disease (COPD) and asthma.

    METHODS: In our mixed-methods approach, 120 participants (>18 years) from the SEACO HDSS in Segamat, Malaysia, will be engaged over three cycles, each lasting 3 weeks. Participants will use wearables to monitor heart rate, activity, and sleep. Indoor sensors will measure temperature in indoor living spaces, while 3D-printed weather stations will track indoor temperature and humidity. In each cycle, a minimum of 10 participants at high risk for COPD or asthma will be identified. Through interviews and questionnaires, we will evaluate the devices' reliability, the prevalence of climate-sensitive lung diseases, and their correlation with environmental factors, like heat and humidity.

    RESULTS: We anticipate that the sensor-based measurements will offer a comprehensive understanding of the interplay between climate-sensitive diseases and weather variables. The data is expected to reveal correlations between health impacts and weather exposures like heat. Participant feedback will offer perspectives on the usability and feasibility of these digital tools.

    CONCLUSION: Our study within the SEACO HDSS in Malaysia will evaluate the potential of sensor-based digital technologies in monitoring the interplay between climate change and health, particularly for climate-sensitive diseases like COPD and asthma. The data generated will likely provide details on health profiles in relation to weather exposures. Feedback will indicate the acceptability of these tools for broader health surveillance. As climate change continues to impact global health, evaluating the potential of such digital technologies is crucial to understand its potential to inform policy and intervention strategies in vulnerable regions.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links