Displaying all 4 publications

Abstract:
Sort:
  1. Liow MY, Chan ES, Ng WZ, Song CP
    Int J Biol Macromol, 2024 Sep;276(Pt 1):133817.
    PMID: 39002902 DOI: 10.1016/j.ijbiomac.2024.133817
    Ultrasound technology has emerged as a promising tool for enhancing enzymatic biodiesel production, yet the cavitation effect induced can compromise enzyme stability. This study explored the efficiency of polyols in enhancing lipase stability under ultrasound conditions to further improve biodiesel yield. The incorporation of sorbitol resulted in the highest fatty acid methyl ester (FAME) content in the ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 among the investigated polyols. Furthermore, sorbitol enhanced the stability of the lipase, allowing it to tolerate up to 100 % ultrasound amplitude, compared to 60 % amplitude in its absence. Enzyme activity assays revealed that sorbitol preserved 99 % of the lipase activity, in contrast to 84 % retention observed without sorbitol under an 80 % ultrasound amplitude. Circular dichroism (CD) and fluorescence spectroscopy analyses confirmed that sorbitol enhanced lipase rigidity and preserved its conformational structure under ultrasound exposure. Furthermore, employing a stepwise methanol addition strategy in ultrasound-assisted reactions with sorbitol achieved an 81.2 wt% FAME content in 8 h with only 0.2 wt% enzyme concentration. This promising result highlights the potential of sorbitol as a stabilizing agent in ultrasound-assisted enzymatic biodiesel production, offering a viable approach for enhancing biodiesel yield and enzyme stability in industrial applications.
  2. Balakrishnan V, Ng WZ, Soo MC, Han GJ, Lee CJ
    Int J Disaster Risk Reduct, 2022 Aug;78:103144.
    PMID: 35791376 DOI: 10.1016/j.ijdrr.2022.103144
    The spread of fake news increased dramatically during the COVID-19 pandemic worldwide. This study aims to synthesize the extant literature to understand the magnitude of this phenomenon in the wake of the pandemic in 2021, focusing on the motives and sociodemographic profiles, Artificial Intelligence (AI)-based tools developed, and the top trending topics related to fake news. A scoping review was adopted targeting articles published in five academic databases (January 2021-November 2021), resulting in 97 papers. Most of the studies were empirical in nature (N = 69) targeting the general population (N = 26) and social media users (N = 13), followed by AI-based detection tools (N = 27). Top motives for fake news sharing include low awareness, knowledge, and health/media literacy, Entertainment/Pass Time/Socialization, Altruism, and low trust in government/news media, whilst the phenomenon was more prominent among those with low education, males and younger. Machine and deep learning emerged to be the widely explored techniques in detecting fake news, whereas top topics were related to vaccine, virus, cures/remedies, treatment, and prevention. Immediate intervention and prevention efforts are needed to curb this anti-social behavior considering the world is still struggling to contain the spread of the COVID-19 virus.
  3. Chia TS, Kwong HC, Sim AJ, Ng WZ, Wong QA, Chidan Kumar CS, et al.
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):49-52.
    PMID: 30713732 DOI: 10.1107/S2056989018017425
    In this study, a new monoclinic polymorph (space group C2/c) of 2,2'-methyl-enebis(isoindoline-1,3-dione), C17H10N2O4, is reported and compared to the previously reported triclinic polymorph (space group P ). Similarly, both polymorphs consist of a unique mol-ecule in the asymmetric unit (Z' = 1). The mol-ecular conformations of the two polymorphs are very similar, as shown by the r.m.s. deviation of 0.368 Å (excluding all H atoms). The inter-molecular inter-actions of both polymorphs are described along with the Hirshfeld surface analysis, and the lattice energies are calculated.
  4. Chidan Kumar CS, Sim AJ, Ng WZ, Chia TS, Loh WS, Kwong HC, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 7):927-931.
    PMID: 28775853 DOI: 10.1107/S2056989017007836
    The asymmetric unit of the title compound, C15H15N3O3·0.5H2O, comprises two 2-{[(4-iminiumyl-3-methyl-1,4-di-hydro-pyridin-1-yl)meth-yl]carbamo-yl}benzoate zwitterions (A and B) and a water mol-ecule. The dihedral angles between the pyridine and phenyl rings in the zwitterions are 53.69 (10) and 73.56 (11)° in A and B, respectively. In the crystal, mol-ecules are linked by N-H⋯O, O-H⋯O, C-H⋯O and C-H⋯π(ring) hydrogen bonds into a three-dimensional network. The crystal structure also features π-π inter-actions involving the centroids of the pyridine and phenyl rings [centroid-centroid distances = 3.5618 (12) Å in A and 3.8182 (14) Å in B].
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links