We investigated the fine-scale genetic structure of three tropical-rainforest trees, Hopea dryobalanoides, Shorea parvifolia and S. acuminata (Dipterocarpaceae), in Peninsular Malaysia, all of which cooccurred within a 6-ha plot in Pasoh Forest Reserve. A significant genetic structure was found in H. dryobalanoides, weaker (but still significant) genetic structure in S. parvifolia and nonsignificant structure in S. acuminata. Seeds of all three species are wind dispersed, and their flowers are thought to be insect pollinated. The most obvious difference among these species is their height: S. parvifolia and S. acuminata are canopy species, whereas H. dryobalanoides is a subcanopy species. Clear differences were also found among these species in their range of seed dispersal, which depends on the height of the release point; so taller trees disperse their seed more extensively. The estimates of seed dispersal area were consistent with the degree of genetic structure found in the three species. Therefore, tree height probably had a strong influence on the fine-scale genetic structure of the three species.
The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.
The maintenance of mixed mating was studied in Shorea curtisii, a dominant and widely distributed dipterocarp species in Southeast Asia. Paternity and hierarchical Bayesian analyses were used to estimate the parameters of pollen dispersal kernel, male fecundity and self-pollen affinity. We hypothesized that partial self incompatibility and/or inbreeding depression reduce the number of selfed seeds if the mother trees receive sufficient pollen, whereas reproductive assurance increases the numbers of selfed seeds under low amounts of pollen. Comparison of estimated parameters of self-pollen affinity between high density undisturbed and low density selectively logged forests indicated that self-pollen was selectively excluded from mating in the former, probably due to partial self incompatibility or inbreeding depression until seed maturation. By estimating the self-pollen affinity of each mother tree in both forests, mother trees with higher amount of self-pollen indicated significance of self-pollen affinity with negative estimated value. The exclusion of self-fertilization and/or inbreeding depression during seed maturation occurred in the mother trees with large female fecundity, whereas reproductive assurance increased self-fertilization in the mother trees with lower female fecundity.
Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.0 to 26.6 °C. Comparing forests at equivalent aboveground biomass (160 Mg C ha-1), tropical forests ≥24 °C MAT averaged more than double the aboveground woody productivity of forests <12 °C (3.7 ± 0.3 versus 1.6 ± 0.1 Mg C ha-1 yr-1). Nonetheless, species with similar standing biomass and maximum stature had similar productivity across plots regardless of temperature. We find that differences in the relative contribution of smaller- and larger-biomass species explained 86% of the observed productivity differences. Species-rich tropical forests are more productive than other forests due to the high relative productivity of many short-stature, small-biomass species.