Lead contamination present in wastewater is one of the major problems due to its toxicity and persistence. This issue increased dramatically and led to the environmental and health concerns worldwide. Therefore, this study aims to remove lead from synthetic wastewater effluent by adsorption process. In this study, nanomaterial called graphene oxide (GO) is used as an adsorbent due to its mechanical strength and high surface area. The parameters were optimized using Fractional factorial design under response surface method. GO demonstrates high adsorption capacity, qmax = 500 mg/g at 100 mg/L of initial lead concentration and at optimum pH 9. Adsorption isotherm of lead was also investigated to evaluate the adsorption capacity. The equilibrium data of graphene oxide adsorption was better represented by the Langmuir isotherm and was achieved within 60 minutes. The results showed that GO has potential to be an important adsorbent for lead removal. In the future, GO might be imbedded as adsorbent in the membrane fabrication for wastewater treatment.
Boron has been classified as a drinking water pollutant in many countries. It is harmful to many plants, exceptionally sensible plants, and human health. Therefore, boron level needs to be decreased to 0.3 mg/L for drinking water and within 0.5 mg/L to 1 mg/L for irrigation water. In this study, various operational parameters namely pH, contact time and liquid/solid ratio were investigated to determine the potential of using date seed (or date pit or date stone) to remove boron from seawater. This study's main objective was to determine boron adsorption capacities of date seeds prepared by various methods (i.e., powdered, activated, acid-treated and defatted seed) by batch adsorption process using boron contaminated synthetic seawater. The process parameters of the selected biosorbent among the four date seed preparations methods were optimized. The surface characteristics were analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The results showed that acid-treated date seed was the best biosorbent in terms of removing 89.18% boron from aqueous solution at neutral pH, liquid to solid ratio of 5 within 2 hours of reaction time at room temperature (25°C±2°C).