Displaying all 3 publications

Abstract:
Sort:
  1. Mohd Hassan FW, Muggundha Raoov, Kamaruzaman S, Sanagi MM, Yoshida N, Hirota Y, et al.
    J Sep Sci, 2018 Oct;41(19):3751-3763.
    PMID: 30125466 DOI: 10.1002/jssc.201800326
    This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000 ng/L) with coefficient of determination (R2 ) of ≥0.9951, low limits of detection (3-16 ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations n = 5). The entire sample preparation procedure was simple, rapid and can be accomplished within 10 min. This method was applied (after pretreatment) to 30 selected samples, and the presence of studied analytes was quantified in 17 samples.
  2. Nasir ANM, Yahaya N, Zain NNM, Lim V, Kamaruzaman S, Saad B, et al.
    Food Chem, 2019 Mar 15;276:458-466.
    PMID: 30409620 DOI: 10.1016/j.foodchem.2018.10.044
    Thiol-functionalized magnetic carbon nanotubes (TMCNTs) were employed as the sorbent in the magnetic micro-solid phase extraction (M-µ-SPE) of sulfonamide antibiotics (SAs) in water, milks and chicken meat products prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The synthesized sorbent was characterized by several spectroscopic techniques. Optimum conditions were: 20 mg of TMCNTs at pH 4, 2 min extraction time, 10% addition of salt and 30 mL of sample volume. Under the optimized TMCNTs-M-µ-SPE and HPLC-DAD conditions, the method showed good linearity in the range of 0.1-500 µg L-1 (r2 ≥ 0.9950), low limits of detection (0.02-1.5 µg L-1), good analytes recovery (80.7-116.2%) and acceptable RSDs (0.3-7.7%, n = 15). The method was applied to tap water (1), milks (15) and commercial chicken meat products (35), SAs were detected in five chicken meat samples (3.0-25.7 µg L-1). The method is critically compared to those reported in the literature.
  3. Honda Y, Onodera S, Takemoto H, Harun NFC, Nomoto T, Matsui M, et al.
    Pharm Res, 2023 Jan;40(1):157-165.
    PMID: 36307662 DOI: 10.1007/s11095-022-03414-8
    PURPOSE: Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature.

    METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells.

    RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C.

    CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links