This study presents an efficient finite element analysis technique which shows great versatility in
modelling of precast composite flooring system subjected to static loadings. The method incorporates sliding and opening in the analysis of composite structures using the interface element which was specifically designed to simulate the actual behaviour at the interfaces between contacting materials. A three-dimensional finite element model of the precast composite slab which exhibits discontinuous behaviour was performed to demonstrate the potential and applicability of the proposed method of analysis. The results of the analysis demonstrate that the overall response of a discontinuous system to external loading is significantly affected by the bonding condition at the interfaces between the contacting materials.
Precast concrete technology forms an important part in the drive towards a full implementation of the Industrialized Building System (IBS). The IBS requires building components and their dimensions to be standardized, and preferably cast off site. Slabs are major structural elements in buildings, other than beams and columns. Standardized and optimized slabs can significantly enhance the building industries in achieving the full implementation of the IBS. Nevertheless, this requires computer techniques to achieve standardized and optimized slabs which can satisfy all building design requirements, including the standards of architectural and structural design standards. This study proposed a computer technique which analysed and designed five different types of slabs which will satisfy all the requirements in design. The most commonly used slabs included in this study were the solid one way, solid two way, ribbed, voided and composite slabs. The computer techniques enable the design of the most optimized sections for any of the slab types under any loading and span conditions. The computer technique also provides details for the reinforcements required for the slabs.
An attempt was made in this investigation to trace the dynamic response of roller compacted concrete dam, which is subjected to horizontal ground motion by considering the interactions between flexible foundations, reservoir water, and bottom reservoir sediments. Two-dimensional finiteinfinite element was used for the non-linear elasto-plastic dynamic analysis. In this analysis, special emphasis was given to the non-linear behaviour of discontinuities along RCC dam-bedding rock foundation which was modelled by thin layer interface. Analysis was first carried out under static loading (self-weight and hydrostatic pressure), and this this was followed by seismic analysis, with hydrodynamic pressure effect in a dam-reservoir system. Based on the numerical dynamic results, it is concluded that the bottom reservoir sediment has significant effect on the seismic response of the RCC gravity dam. Moreover, there is a redistribution of the stresses at thin layer interface with significant stresses reduction, which is resulted from the release of energy through different modes of deformation in this region.