Displaying all 8 publications

Abstract:
Sort:
  1. Sobhi, B., Noranizan, M., Ab Karim, S., Abdul Rahman, R., Bakar, J., Ghazali, Z.
    MyJurnal
    Chili shrimp paste (CSP) is a favorite condiment in Southeast Asia. Microbial spoilage makes CSP unsuitable for consumption within several days. Thermal treatment was applied to produce microbiologically safe CSP. The effect of heating process on physicochemical and sensorial properties of CSP was studied. Heating at the optimum condition (21.6 min, 80 ˚C) has been shown effective and reliable in controlling microorganisms in CSP. Complete inactivation of peroxidase activities could not be accomplished at the optimal point, and significant reduction of the total phenolic and capsaicinoids contents was observed. Sensorial evaluation indicated that thermally processed CSP was less preferred by panelists when compared to freshly prepared samples of dry weight respectively.
  2. Halim, H., Noranizan, M., Sobhi, B., Sew, C.C., Karim, R., Osman, A.
    MyJurnal
    Red pitaya juice (RPJ) was subjected to UV-C irradiation and the potential of UV as a pasteurization tool for reducing microbial load in pitaya juice was evaluated. Effectiveness of the hurdle concept, i.e. addition of citric acid (CA) and dimethyl dicarbonate (DMDC) was also studied. Total plate counts (TPC) and yeast and mould counts (YMC) achieved 2.43 log₁₀ and 2.7 log₁₀ reductions respectively after exposure to UV irradiation. Addition of the CA (0.5 - 2.0%) and dimethyl dicarbonate (DMDC) (5 - 20 µL/100mL) to pitaya juice reduced the microbial loads, with 1.5% CA and 15 µL/100mL DMDC being the most effective concentrations. Addition of CA and DMDC into RPJ prior to UV treatment achieved significantly higher microbial reduction compared to UV alone, which were 4.12 log ₁₀ and 4.14 log₁₀ reductions for TPC and for YMC, respectively.
  3. Chia, S. L., Rosnah, S., Noranizan, M. A., Wan Ramli, W. D.
    MyJurnal
    The effect of storage time on the quality of ultraviolet-irradiated and thermally pasteurised pineapple juice was evaluated. The juices were irradiated with ultraviolet light (UV-C) at wavelength 254 nm (53.42 mJ/cm2, 4.918 s), thermally pasteurised at 800C for 10 minutes and stored at 40C for 13 weeks. There were significant changes in the total soluble solids, pH, titratable acidity and turbidity of UV-irradiated juice during storage, whereas for the same quality attributes of thermally pasteurised juice remained stable throughout the storage time. There were no significant changes in total phenolics for both treatments throughout the storage period. Other quality parameters (ascorbic acid, colour L, hue angle and chroma) were significantly affected by the storage time. Regarding the microbiological analysis, the total plate counts and yeast and mould counts of the UV-irradiated juice increased gradually throughout the 13 weeks of storage while these parameters remained unchanged in the thermally pasteurised juice with almost no microorganism growth. UV-irradiated pineapple juice preserved better quality attributes (TSS, pH, titratable acidity, ascorbic acid, turbidity, total phenolic, L (lightness), hue angle and chroma) than the thermal pasteurised juice during the storage time. Hence, UV irradiation has great potential as an alternative technology to thermal pasteurisation in producing products of high nutritive values.
  4. Goh, S. G., Noranizan, M., Leong, C. M., Sew C. C., Sobhi, B.
    MyJurnal
    Thermal treatment is commonly applied in juice manufacturing as a method to pasteurize juices. However the heat may deteriorate some of the essential compounds in the juice, especially heat-sensitive antioxidants. Therefore non-thermal treatment such as ultraviolet (UV) ray has been proposed as an alternative for pasteurization. The objective of this study was to compare the effect of thermal and UV treatments on the content of antioxidants (phenolic acids, flavonoids, carotenoids, ascorbic acids) and antioxidant capacity of single strength pineapple juice. The antioxidants stability of juices throughout 14 days of refrigerated storage was also studied. Ultraviolet treatment shows higher ascorbic acid content after treatment as compared to thermally treated single strength pineapple juice. Storage time affected the studied antioxidants, where UV
    treatment provided better stability to ascorbic acid content while thermal treatment provided better stability to flavonoids and carotenoids.
  5. Siti Zaharah, R., Noranizan, M., Son, R., Roselina, K., Yusof, N. L., Koh, P. C., et al.
    MyJurnal
    Pennywort (Centella asiatica) is a herbaceous vegetable commonly consumed raw as ‘ulam’ or salad. Consumption of raw leafy green vegetables is one of the pathogenic mechanisms that could cause foodborne outbreaks. The aim of the present work was therefore to investigate the effect of pulsed light (PL) treatment at fluences of 1.5, 4.2, 6.9, 9.6, and 12.3 J/cm² on the microbiological and physical quality of pennywort stored at 4 ± 1°C. Escherichia coli (E. coli) were inoculated onto the pennywort leaves before being exposed to PL and viewed using scanning electron microscopy (SEM). PL fluences of 6.9, 9.6, and 12.3 J/cm² significantly reduced the microbial count; however, the highest inactivation was obtained by using fluences of 9.6 and 12.3 J/cm². The color of pennywort was not significantly affected by PL treatment applied at lower fluences of 1.5, 4.2, and 6.9 J/cm²; however, at higher fluence, 9.6 and 12.3 J/cm², the color was affected. PL at 1.5, 4.2, 6.9, and 9.6 J/cm² was able to retain the texture appearance of the leaves. To conclude, PL at 6.9 J/cm² showed the best fluence to reduce total aerobic mesophilic count while retaining the physical properties of pennywort leaves and extend the shelf life to about four days. The inactivation of E. coli population was significantly higher at PL fluence of 6.9 J/cm². It was observed that PL caused the destruction to the surface of E. coli’s cell membrane. The reductions of samples inoculated with E. coli were better than those achieved in native microbiota. Furthermore, the present work also demonstrated that PL treatment was able to reduce the microbial count on pennywort leaves.
  6. Noranizan, M., Pean, L. F., Li, J. W., Aadil, R. M., Ahmad, T., Rosli, S. Z., et al.
    MyJurnal
    The present work investigated the impact of several juice extraction methods (blender,
    centrifugal juicer, and slow juicer) and thermal pasteurisation (72°C, 15 s) on the different
    properties [physicochemical, polyphenol oxidase (PPO) activity, and functional] of
    Clinacanthus nutans juice mix during storage (28 d, 4°C). Regardless of juicing technique, all
    juices had similar colour and antioxidants [tested using 2,2-diphenyl-1-picrylhydrazyl
    (DPPH) and ferric reducing antioxidant power (FRAP) methods]. The juices also had similar
    PPO activity and sensory acceptance in terms of colour, aroma, flavour, mouthfeel, and
    overall acceptability. The blender yielded juice with higher pH, soluble solids, and relative
    viscosity than other methods. The slow juicer was the best at retaining ascorbic acid (39.33 ±
    3.06 mg/100 mL), while the blender was best at retaining phenolic compounds (11.82 ± 0.12
    mg gallic acid equivalents/100 mL) and chlorophyll (6.95 ± 0.31 μg/mL). Pasteurisation
    negatively affected the colour, functional properties, and sensory characteristics (colour,
    aroma, flavour, and mouthfeel) of the juice.
  7. Nur Fatin Nazurah R, Noranizan MA, Nor-Khaizura MAR, Nur Hanani ZA
    Int J Biol Macromol, 2024 Jul;273(Pt 2):132972.
    PMID: 38876241 DOI: 10.1016/j.ijbiomac.2024.132972
    The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.
  8. Han Lyn F, Ismail-Fitry MR, Noranizan MA, Tan TB, Nur Hanani ZA
    Int J Biol Macromol, 2024 May;266(Pt 2):131340.
    PMID: 38574927 DOI: 10.1016/j.ijbiomac.2024.131340
    This review article provides a comprehensive overview of recent progress in polylactic acid (PLA) extrusion, emphasizing its applications in food packaging. PLA has witnessed a significant rise in demand, particularly within the food packaging sector. A notable increase in research publications has been observed in recent years, exploring the extrusion of PLA and PLA-based composite films. In comparison to conventional techniques such as solvent casting, extrusion offers advantages in scalability and environmental sustainability, especially for industrial-scale production. The benefits of this method include faster drying times, enhanced flexibility, consistent film thickness, and less structural defects. Extensive research has focused on the effect of various PLA blends on film properties, including flexibility, elongation, and barrier properties against water vapour and gases. Furthermore, the incorporation of compounds such as antioxidants, antimicrobials, and natural pigments has enabled the development of active and intelligent PLA-based packaging. This article summarizes the types of additives employed to enhance the physicochemical properties of extruded PLA and film performance. Additionally, this article explores the diverse applications of extruded PLA in active and intelligent packaging for various food products.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links