Neuraminidase (NA) is an enzyme that prevents virions from aggregating within the host cell and promotes cell-to-cell spread by cleaving glycosidic linkages to sialic acid. The best-known neuraminidase is the viral neuraminidase, which present in the influenza virus. Thus, the development of anti-influenza drugs that inhibit NA has emerged as an important and intriguing approach in the treatment of influenza. Garcinia atroviridis L. (GA) dried fruits (GAF) are used commercially as seasoning and in beverages. The main objective of this study was to identify a new potential neuraminidase inhibitor from GA. A bioassay-guided fractionation method was applied to obtain the bioactive compounds leading to the identification of garcinia acid and naringenin. In an enzyme inhibition study, garcinia acid demonstrated the highest activity when compared to naringenin. Garcinia acid had the highest activity, with an IC50 of 17.34-17.53 µg/mL or 91.22-92.21 µM against Clostridium perfringens-NA, and 56.71-57.85 µg/mL or 298.32-304.31 µM against H1N1-NA. Based on molecular docking results, garcinia acid interacted with the triad arginine residues (Arg118, Arg292, and Arg371) of the viral neuraminidase, implying that this compound has the potential to act as a NA enzyme inhibitor.
Previous studies have reported that compounds bearing an arylamide linked to a heterocyclic planar ring have successfully inhibited the hemopexin-like domain (PEX9) of matrix metalloproteinase 9 (MMP9). PEX9 has been suggested to be more selectively targeted than MMP9's catalytic domain in a degrading extracellular matrix under some pathologic conditions, especially in cancer. In this study, we aim to synthesize and evaluate 10 arylamide compounds as MMP9 inhibitors through an enzymatic assay as well as a cellular assay. The mechanism of inhibition for the most active compounds was investigated via molecular dynamics simulation (MD). Molecular docking was performed using AutoDock4.0 with PEX9 as the protein model to predict the binding of the designed compounds. The synthesis was carried out by reacting aniline derivatives with 3-bromopropanoyl chloride using pyridine as the catalyst at room temperature. The MMP9 assay was conducted using the FRET-based MMP9 kits protocol and gelatin zymography assay. The cytotoxicity assay was done using the MTT method, and the MD simulation was performed using AMBER16. Assay on MMP9 demonstrated activities of three compounds (2, 7, and 9) with more than 50% inhibition. Further inhibition on MMP9 expressed by 4T1 showed that two compounds (7 and 9) inhibited its gelatinolytic activity more than 50%. The cytotoxicity assay against 4T1 cells results in the inhibition of the cell growth with an EC50 of 125 μM and 132 μM for 7 and 9, respectively. The MD simulation explained a stable interaction of 7 and 9 in PEX9 at 100 ns with a free energy of binding of -8.03 kcal/mol and -6.41 kcal/mol, respectively. Arylamides have potential effects as selective MMP9 inhibitors in inhibiting breast cancer cell progression.