Displaying all 4 publications

Abstract:
Sort:
  1. Ward HA, Murphy N, Weiderpass E, Leitzmann MF, Aglago E, Gunter MJ, et al.
    Int J Cancer, 2019 Sep 15;145(6):1510-1516.
    PMID: 30585640 DOI: 10.1002/ijc.32090
    Gallstones, a common gastrointestinal condition, can lead to several digestive complications and can result in inflammation. Risk factors for gallstones include obesity, diabetes, smoking and physical inactivity, all of which are known risk factors for colorectal cancer (CRC), as is inflammation. However, it is unclear whether gallstones are a risk factor for CRC. We examined the association between history of gallstones and CRC in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a prospective cohort of over half a million participants from ten European countries. History of gallstones was assessed at baseline using a self-reported questionnaire. The analytic cohort included 334,986 participants; a history of gallstones was reported by 3,917 men and 19,836 women, and incident CRC was diagnosed among 1,832 men and 2,178 women (mean follow-up: 13.6 years). Hazard ratios (HR) and 95% confidence intervals (CI) for the association between gallstones and CRC were estimated using Cox proportional hazards regression models, stratified by sex, study centre and age at recruitment. The models were adjusted for body mass index, diabetes, alcohol intake and physical activity. A positive, marginally significant association was detected between gallstones and CRC among women in multivariable analyses (HR = 1.14, 95%CI 0.99-1.31, p = 0.077). The relationship between gallstones and CRC among men was inverse but not significant (HR = 0.81, 95%CI 0.63-1.04, p = 0.10). Additional adjustment for details of reproductive history or waist circumference yielded minimal changes to the observed associations. Further research is required to confirm the nature of the association between gallstones and CRC by sex.
  2. Kong SY, Takeuchi M, Hyogo H, McKeown-Eyssen G, Yamagishi S, Chayama K, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Dec;24(12):1855-63.
    PMID: 26404963 DOI: 10.1158/1055-9965.EPI-15-0422
    BACKGROUND: A large proportion of colorectal cancers are thought to be associated with unhealthy dietary and lifestyle exposures, particularly energy excess, obesity, hyperinsulinemia, and hyperglycemia. It has been suggested that these processes stimulate the production of toxic reactive carbonyls from sugars such as glyceraldehyde. Glyceraldehyde contributes to the production of a group of compounds known as glyceraldehyde-derived advanced glycation end-products (glycer-AGEs), which may promote colorectal cancer through their proinflammatory and pro-oxidative properties. The objective of this study nested within a prospective cohort was to explore the association of circulating glycer-AGEs with risk of colorectal cancer.

    METHODS: A total of 1,055 colorectal cancer cases (colon n = 659; rectal n = 396) were matchced (1:1) to control subjects. Circulating glycer-AGEs were measured by a competitive ELISA. Multivariable conditional logistic regression models were used to calculate ORs and 95% confidence intervals (95% CI), adjusting for potential confounding factors, including smoking, alcohol, physical activity, body mass index, and diabetes status.

    RESULTS: Elevated glycer-AGEs levels were not associated with colorectal cancer risk (highest vs. lowest quartile, 1.10; 95% CI, 0.82-1.49). Subgroup analyses showed possible divergence by anatomical subsites (OR for colon cancer, 0.83; 95% CI, 0.57-1.22; OR for rectal cancer, 1.90; 95% CI, 1.14-3.19; Pheterogeneity = 0.14).

    CONCLUSIONS: In this prospective study, circulating glycer-AGEs were not associated with risk of colon cancer, but showed a positive association with the risk of rectal cancer.

    IMPACT: Further research is needed to clarify the role of toxic products of carbohydrate metabolism and energy excess in colorectal cancer development.

  3. Murphy N, Cross AJ, Abubakar M, Jenab M, Aleksandrova K, Boutron-Ruault MC, et al.
    PLoS Med, 2016 Apr;13(4):e1001988.
    PMID: 27046222 DOI: 10.1371/journal.pmed.1001988
    BACKGROUND: Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia) have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic) overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown.

    METHODS AND FINDINGS: The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed.

    CONCLUSIONS: These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer.

  4. Stepien M, Lopez-Nogueroles M, Lahoz A, Kühn T, Perlemuter G, Voican C, et al.
    Int J Cancer, 2022 Apr 15;150(8):1255-1268.
    PMID: 34843121 DOI: 10.1002/ijc.33885
    Bile acids (BAs) play different roles in cancer development. Some are carcinogenic and BA signaling is also involved in various metabolic, inflammatory and immune-related processes. The liver is the primary site of BA synthesis. Liver dysfunction and microbiome compositional changes, such as during hepatocellular carcinoma (HCC) development, may modulate BA metabolism increasing concentration of carcinogenic BAs. Observations from prospective cohorts are sparse. We conducted a study (233 HCC case-control pairs) nested within a large observational prospective cohort with blood samples taken at recruitment when healthy with follow-up over time for later cancer development. A targeted metabolomics method was used to quantify 17 BAs (primary/secondary/tertiary; conjugated/unconjugated) in prediagnostic plasma. Odd ratios (OR) for HCC risk associations were calculated by multivariable conditional logistic regression models. Positive HCC risk associations were observed for the molar sum of all BAs (ORdoubling  = 2.30, 95% confidence intervals [CI]: 1.76-3.00), and choline- and taurine-conjugated BAs. Relative concentrations of BAs showed positive HCC risk associations for glycoholic acid and most taurine-conjugated BAs. We observe an association between increased HCC risk and higher levels of major circulating BAs, from several years prior to tumor diagnosis and after multivariable adjustment for confounders and liver functionality. Increase in BA concentration is accompanied by a shift in BA profile toward higher proportions of taurine-conjugated BAs, indicating early alterations of BA metabolism with HCC development. Future studies are needed to assess BA profiles for improved stratification of patients at high HCC risk and to determine whether supplementation with certain BAs may ameliorate liver dysfunction.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links