Displaying all 4 publications

Abstract:
Sort:
  1. Qin Y, O Santos H, Khani V, Tan SC, Zhi Y
    Nutr Metab Cardiovasc Dis, 2020 08 28;30(9):1465-1475.
    PMID: 32675010 DOI: 10.1016/j.numecd.2020.05.015
    BACKGROUND AND AIMS: Dehydroepiandrosterone (DHEA) supplementation has gained attention in individuals with adrenal insufficiency, and as a tool for increasing androgens and estrogens whereby is proposed to improve the accretion of muscle and bone mass. However, DHEA supplementation has demonstrated negative effects on the lipid profile and, thus, we aimed to analyze the body of evidence in this regard.

    METHODS AND RESULTS: A systematic review and dose-response meta-analysis of randomized controlled trials (RCTs) was performed employing in Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar, then including relevant articles that addressed the effects of DHEA supplementation on the lipid profile, up to February 2020. Combined findings were generated from 23 eligible articles. Hence, total cholesterol (TC) (weighted mean difference (WMD): -3.5 mg/dl, 95% confidence interval (CI): -8.5 to 1.6)), low-density lipoprotein-cholesterol (LDL-C) (WMD: 0.34 mg/dl, 95% CI: -3 to 3.7) and triglycerides (TG) levels (WMD: -2.85 mg/dl, 95% CI: -9.3 to 3.6) did not alter in DHEA group compared to the control, but HDL-C levels significantly reduced in DHEA group (WMD: -3.1 mg/dl, 95% CI: -4.9 to -1.3). In addition, a significant reduction in HDL-C values was observed in studies comprising women (WMD: -5.1 mg/dl, 95% CI: -7.2 to -3) but not in males (WMD: 0.13 mg/dl, 95% CI: -1.4 to 1.7).

    CONCLUSIONS: Overall, supplementation with DHEA did not change circulating values of TC, LDL-C and TG, whereas it may decrease HDL-C levels. Further long-term RCTs are required to investigate the effects of DHEA particularly on major adverse cardiac events.

  2. Xie M, Zhong Y, Xue Q, Wu M, Deng X, O Santos H, et al.
    Exp Gerontol, 2020 07 15;136:110949.
    PMID: 32304719 DOI: 10.1016/j.exger.2020.110949
    BACKGROUND AND AIM: Inconsistencies exist with regard to the influence of dehydroepiandrosterone (DHEA) supplementation on insulin-like growth factor 1 (IGF-1) levels. The inconsistencies could be attributed to several factors, such as dosage, gender, and duration of intervention, among others. To address these inconsistencies, we conducted a systematic review and meta-analysis to combine findings from randomized controlled trials (RCTs) on this topic.

    METHODS: Electronic databases (Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar) were searched for relevant literature published up to February 2020.

    RESULTS: Twenty-four qualified trials were included in this meta-analysis. It was found that serum IGF-1 levels were significantly increased in the DHEA group compared to the control (weighted mean differences (WMD): 16.36 ng/ml, 95% CI: 8.99, 23.74; p = .000). Subgroup analysis revealed that a statistically significant increase in serum IGF-1 levels was found only in women (WMD: 23.30 ng/ml, 95% CI: 13.75, 32.87); in participants who supplemented 50 mg/d DHEA (WMD: 15.75 ng/ml, 95% CI: 7.61, 23.89); in participants undergoing DHEA intervention for >12 weeks (WMD: 17.2 ng/ml, 95% CI: 8.02, 26.22); in participants without an underlying comorbidity (WMD: 19.11 ng/ml, 95% CI: 10.69, 27.53); and in participants over the age of 60 years (WMD: 19.79 ng/ml, 95% CI: 9.86, 29.72).

    CONCLUSION: DHEA supplementation may increase serum IGF-I levels especially in women and older subjects. However, further studies are warranted before DHEA can be recommended for clinical use.

  3. Fang Z, Dang M, Zhang W, Wang Y, Kord-Varkaneh H, Nazary-Vannani A, et al.
    Complement Ther Med, 2020 May;50:102395.
    PMID: 32444054 DOI: 10.1016/j.ctim.2020.102395
    BACKGROUND & OBJECTIVE: Effects of walnut intake on anthropometric measurements have been inconsistent among clinical studies. Thus, we conducted a meta-analysis of randomized clinical trials (RCTs) to evaluate and quantify the effects of walnut intake on anthropometric characteristics.

    METHODS: We carried out a systematic search of all available RCTs up to June 2019 in the following electronic databases: PubMed, Scopus, Web of Science and Google Scholar. Pooled weight mean difference (WMD) of the included studies was estimated using random-effects model.

    RESULTS: A total of 27 articles were included in this meta-analysis, with walnuts dosage ranging from 15 to 108 g/d for 2 wk to 2 y. Overall, interventions with walnut intake did not alter waist circumference (WC) (WMD: -0.193 cm, 95 % CI: -1.03, 0.64, p = 0.651), body weight (BW) (0.083 kg, 95 % CI: -0.032, 0.198, p = 0.159), body mass index (BMI) (WMD: -0.40 kg/m,295 % CI: -0.244, 0.164, p = 0.703), and fat mass (FM) (WMD: 0.28 %, 95 % CI: -0.49, 1.06, p = 0.476). Following dose-response evaluation, reduced BW (Coef.= -1.62, p = 0.001), BMI (Coef.= -1.24, p = 0.041) and WC (Coef.= -5.39, p = 0.038) were significantly observed through walnut intake up to 35 g/day. However, the number of studies can be limited as to the individual analysis of the measures through the dose-response fashion.

    CONCLUSIONS: Overall, results from this meta-analysis suggest that interventions with walnut intake does not alter BW, BMI, FM, and WC. To date, there is no discernible evidence to support walnut intake for improving anthropometric indicators of weight loss.

  4. Varkaneh Kord H, M Tinsley G, O Santos H, Zand H, Nazary A, Fatahi S, et al.
    Clin Nutr, 2021 04;40(4):1811-1821.
    PMID: 33158587 DOI: 10.1016/j.clnu.2020.10.034
    BACKGROUND & AIMS: Fasting and energy-restricted diets have been evaluated in several studies as a means of improving cardiometabolic biomarkers related to body fat loss. However, further investigation is required to understand potential alterations of leptin and adiponectin concentrations. Thus, we performed a systematic review and meta-analysis to derive a more precise estimate of the influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans, as well as to detect potential sources of heterogeneity in the available literature.

    METHODS: A comprehensive systematic search was performed in Web of Science, PubMed/MEDLINE, Cochrane, SCOPUS and Embase from inception until June 2019. All clinical trials investigating the effects of fasting and energy-restricted diets on leptin and adiponectin in adults were included.

    RESULTS: Twelve studies containing 17 arms and a total of 495 individuals (intervention = 249, control = 246) reported changes in serum leptin concentrations, and 10 studies containing 12 arms with a total of 438 individuals (intervention = 222, control = 216) reported changes in serum adiponectin concentrations. The combined effect sizes suggested a significant effect of fasting and energy-restricted diets on leptin concentrations (WMD: -3.690 ng/ml, 95% CI: -5.190, -2.190, p ≤ 0.001; I2 = 84.9%). However, no significant effect of fasting and energy-restricted diets on adiponectin concentrations was found (WMD: -159.520 ng/ml, 95% CI: -689.491, 370.451, p = 0.555; I2 = 74.2%). Stratified analyses showed that energy-restricted regimens significantly increased adiponectin (WMD: 554.129 ng/ml, 95% CI: 150.295, 957.964; I2 = 0.0%). In addition, subsequent subgroup analyses revealed that energy restriction, to ≤50% normal required daily energy intake, resulted in significantly reduced concentrations of leptin (WMD: -4.199 ng/ml, 95% CI: -7.279, -1.118; I2 = 83.9%) and significantly increased concentrations of adiponectin (WMD: 524.04 ng/ml, 95% CI: 115.618, 932.469: I2 = 0.0%).

    CONCLUSION: Fasting and energy-restricted diets elicit significant reductions in serum leptin concentrations. Increases in adiponectin may also be observed when energy intake is ≤50% of normal requirements, although limited data preclude definitive conclusions on this point.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links