A new gall-inducing genus and species of felt scales (Hemiptera: Coccoidea: Eriococcidae) found on the leaves and twigs of Matayba guianensis (Sapindaceae) in Brazil is described: Bystracoccus Hodgson gen n. and B. mataybae Hodgson, Isaias & Oliveira sp. n. This is the first record of an eriococcid inducing leaf and stem galls on Sapindaceae and is only the second example of a member of the Eriococcidae to induce stem galls in which the insects diapause during the dry (winter) season. Only the adult female, second-instar female and crawler are known. The species overwinters as the first-instar nymph in pit galls on the twigs but spends the rest of the year associated with two-chambered galls on the leaves. It has recently become clear that South America has a rich felt-scale insect fauna many of which induce galls. It has proved very difficult to place this new genus in a family as it appears to fall between the Eriococcidae and Beesoniidae but is here placed in the eriococcids based on the similarity of the first-instar nymphs and the abundance of this family in the Neotropics. However, the dorsum of the abdomen of the mature adult female becomes heavily sclerotised, forming a round plug-like structure that completely fills the gall orifice. This structure shows remarkable morphological similarities to that of the beesoniid Danumococcus parashoreae Takagi & Hodgson found on Parashorea tomentella (Dipterocarpaceae) in Sabah, Malaysia, with which it is compared along with other eriococcid genera known from South America.
Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.