Malaria remains a major public health challenge worldwide. In order to ensure a prompt and accurate malaria diagnosis, the World Health Organization recommended the confirmatory parasitological diagnosis of malaria by microscopy and malaria rapid diagnostic test (RDT) prior to antimalarial administration and treatment. This study was designed to evaluate the performance of nested polymerase chain reaction (nested PCR), light microscopy, and Plasmodium falciparum histidine-rich protein 2 rapid diagnostic test (PfHRP2 RDT) in the detection of falciparum malaria in Akure, Nigeria. A cross-sectional and hospital-based study involving 601 febrile volunteer participants was conducted in Akure, Nigeria. Approximately 2-3 mL venous blood samples were obtained from each study participant for parasitological confirmation by microscopy and PfHRP2-based malaria RDT. Thick and thin films were prepared and viewed under the light microscope for parasite detection, parasite density quantification, and species identification, respectively. Dry blood spot samples were prepared on 3MM Whatman filter paper for nested PCR. The overall prevalence of microscopy, PfHRP2 RDT, and nested PCR were 64.89% (390/601), 65.7% (395/601), and 67.39% (405/601), respectively. The estimates of sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and Youden's j index of microscopy and RDT were 96.30, 100.00, 100.00, 92.89, 97.50, 0.963, and 95.06, 94.90, 97.47, 90.29, 95.01, and 0.899, respectively. Malaria RDT recorded higher false negativity, compared microscopy (4.94% vs. 3.70%). A near perfect agreement was reported between microscopy and nested PCR, and between PfHRP2 RDT and nested PCR with Cohen's kappa (k) values of 0.94 and 0.88, respectively. This study revealed that PfHRP2 RDT and microscopy continues to remain sensitive and specific for falciparum malaria diagnosis in the study area.