Leiomyomas are benign soft tissue swellings of smooth muscle origin, most commonly found in the uterus. Extra uterine leiomyomas presenting as an abdominal mass is often a diagnostic challenge as such occurrence is rare. We present a rare case of primary abdominal wall leiomyoma, and highlight the importance of laparoscopic approach in the diagnosis and treatment of such tumour.
Despite the advancement of cardiac imaging technologies, these have traditionally been limited to global geometrical measurements. Computational fluid dynamics (CFD) has emerged as a reliable tool that provides flow field information and other variables essential for the assessment of the cardiac function. Extensive studies have shown that vortex formation and propagation during the filling phase acts as a promising indicator for the diagnosis of the cardiac health condition. Proper setting of the boundary conditions is crucial in a CFD study as they are important determinants, that affect the simulation results. In this article, the effect of different transmitral velocity profiles (parabolic and uniform profile) on the vortex formation patterns during diastole was studied in a ventricle with dilated cardiomyopathy (DCM). The resulting vortex evolution pattern using the uniform inlet velocity profile agreed with that reported in the literature, which revealed an increase in thrombus risk in a ventricle with DCM. However the application of a parabolic velocity profile at the inlet yields a deviated vortical flow pattern and overestimates the propagation velocity of the vortex ring towards the apex of the ventricle. This study highlighted that uniform inlet velocity profile should be applied in the study of the filling dynamics in a left ventricle because it produces results closer to that observed experimentally.
For patient's receiving mechanical circulatory support, malfunction of the left ventricular assist device (LVADs) as well as mal-positioning of the cannula imposes serious threats to their life. It is therefore important to characterize the flow pattern and pressure distribution within the ventricle in the presence of an LVAD. In this paper, we present a 2D axisymmetric fluid structure interaction model of the passive left ventricle (LV) incorporating an LVAD cannula to simulate the effect of the LVAD cannula placement on the vortex dynamics. Results showed that larger recirculation area was formed at the cannula tip with increasing cannula insertion depth, and this is believed to reduce the risk of thrombus formation. Furthermore, we also simulated suction events (collapse of the LV) by closing the inlet. Vortex patterns were significantly altered under this condition, and the greatest LV wall displacement was observed at the part of the myocardium closest to the cannula tip.
Dilated cardiomyopathy (DCM) is a common cardiac disease which leads to the deterioration in cardiac performance. A computational fluid dynamics (CFD) approach can be used to enhance our understanding of the disease, by providing us with a detailed map of the intraventricular flow and pressure distributions. In the present work, effect of ventricular size on the intraventricular flow dynamics and intraventricular pressure gradients (IVPGs) was studied using two different implementation methods, i.e. the geometry-prescribed and the fluid structure interaction (FSI) methods. Results showed that vortex strength and IVPGs are significantly reduced in a dilated heart, leading to an increased risk of thrombus formation and impaired ventricular filling. We suggest FSI method as the ultimate method in studying ventricular dysfunction as it provides additional cardiac disease prognostic factors and more realistic model implementation.
The quantitative analysis of pulsed-chemical exchange saturation transfer (CEST) using a full model-based method is computationally challenging, as it involves dealing with varying RF values in pulsed saturation. A power equivalent continuous approximation of B1 power was usually applied to accelerate the analysis. In line with recent consensus recommendations from the CEST community for pulsed-CEST at 3T, particularly recommending a high RF saturation power (B1 = 2.0 µT) for the clinical application in brain tumors, this technical note investigated the feasibility of using average power (AP) as the continuous approximation. The simulated results revealed excellent performance of the AP continuous approximation in low saturation power scenarios, but discrepancies were observed in the z-spectra for the high saturation power cases. Cautions should be taken, or it may lead to inaccurate fitted parameters, and the difference can be more than 10% in the high saturation power cases.