Displaying all 6 publications

Abstract:
Sort:
  1. Kuan JW, Su AT, Tay SP, Fong IL, Kubota S, Su'ut L, et al.
    Int J Hematol, 2020 Feb;111(2):217-224.
    PMID: 31707540 DOI: 10.1007/s12185-019-02768-x
    The BCR-ABL1 fusion gene is the driver mutation of Philadelphia chromosome-positive chronic myeloid leukemia (CML). Its expression level in CML patients is monitored by a real-time quantitative polymerase chain reaction defined by the International Scale (qPCRIS). BCR-ABL1 has also been found in asymptomatic normal individuals using a non-qPCRIS method. In the present study, we examined the prevalence of BCR-ABL1 in a normal population in southern Sarawak by performing qPCRIS for BCR-ABL1 with ABL1 as an internal control on total white blood cells, using an unbiased sampling method. While 146 of 190 (76.8%) or 102 of 190 (53.7%) samples showed sufficient amplification of the ABL1 gene at > 20,000 or > 100,000 copy numbers, respectively, in qPCRIS, one of the 190 samples showed amplification of BCR-ABL1 with positive qPCRIS of 0.0023% and 0.0032% in two independent experiments, the sequence of which was the BCR-ABL1 e13a2 transcript. Thus, we herein demonstrated that the BCR-ABL1 fusion gene is expected to be present in approximately 0.5-1% of normal individuals in southern Sarawak.
  2. Kuan JW, Su AT, Leong CF, Osato M, Sashida G
    Acta Haematol., 2020;143(2):96-111.
    PMID: 31401626 DOI: 10.1159/000501146
    The treatment of chronic myeloid leukaemia (CML) requires quantitative polymerase chain reaction (qPCR) to monitor BCR-ABL1 in International Scale (IS). Some normal subjects were found to harbour BCR-ABL1. We performed a systematic review on normal subjects harbouring BCR-ABL1. A literature search was done on July 16, 2017 using EBSCOhost Research Databases interface and Western Pacific Region Index Medicus. Two authors selected the studies, extracted the data, and evaluated the quality of studies using the modified Appraisal Tool for Cross-Sectional Studies independently. The outcomes were prevalence, level of BCR-ABL1IS, proportion, and time of progression to CML. The initial search returned 4,770 studies. Eleven studies, all having used convenient sampling, were included, with total of 1,360 subjects. Ten studies used qualitative PCR and one used qPCR (not IS). The mean prevalence of M-BCR was 5.9, 15.5, and 15.9% in cord blood/newborns/infants (CB/NB/I) (n = 170), children (n = 90), and adults (n = 454), respectively, while m-BCR was 15, 26.9, and 23.1% in CB/NB/I (n = 786), children (n = 67), and adults (n = 208), respectively. No study reported the proportion and time of progression to CML. Nine studies were graded as moderate quality, one study as poor quality, and one study as unacceptable. The result of the studies could neither be inferred to the general normal population nor compared. Follow-up data were scarce.
  3. Kuan JW, Su AT, Leong CF, Osato M, Sashida G
    Int J Hematol, 2019 Jan;109(1):130.
    PMID: 30406326 DOI: 10.1007/s12185-018-2556-6
    The author would like to correct the error in the publication of the original article. The corrected detail is given below for your reading.
  4. Kuan JW, Su AT, Leong CF, Osato M, Sashida G
    Int J Hematol, 2018 Nov;108(5):465-484.
    PMID: 30218276 DOI: 10.1007/s12185-018-2528-x
    BACKGROUND: Studies of a provisional entity pre-clinical chronic myeloid leukaemia (CML), which precedes chronic phase (CP) without leucocytosis or blood/marrow feature of CML CP, has been increasing.

    OBJECTIVE: To perform a systematic review of pre-clinical CML and analysis the data relevant to disease progression to CML CP.

    METHOD: We performed a literature search on 16 July 2017 using EBSCOhost Research Databases interface and Western Pacific Region Index Medicus. Two authors selected the studies, extracted the data and evaluated the quality of studies using an 8-item tool, independently. The outcomes were percentage of Philadelphia chromosome in the number of metaphases examined (Ph%), correlation between Ph% and blood count and time progress to CML.

    RESULT: Our initial search returned 4770 studies. A total of 10 studies with a total 17 subjects were included. The lowest Ph%, which eventually progresses to CML, was 10%. Absolute basophil count seemed to correlate better with Ph% compared to total white cell and absolute eosinophil count. The time from the first documented pre-clinical CML to CML ranged from 12 to 48 months. The overall quality of the included studies was average.

    CONCLUSION: This is the first systematic review on pre-clinical CML. This entity requires additional large-scale studies.

  5. Wong WF, Kohu K, Nagashima T, Funayama R, Matsumoto M, Movahed E, et al.
    Mol Immunol, 2015 Dec;68(2 Pt A):223-33.
    PMID: 26350416 DOI: 10.1016/j.molimm.2015.08.012
    The Runx1 transcription factor cooperates with or antagonizes other transcription factors and plays essential roles in the differentiation and function of T lymphocytes. Previous works showed that Runx1 is expressed in peripheral CD4(+) T cells which level declines after T cell receptor (TCR) activation, and artificial deletion of Runx1 causes autoimmune lung disease in mice. The present study addresses the mechanisms by which Runx1 contributes to the maintenance of peripheral CD4(+) T cell quiescence. Microarray and quantitative RT-PCR analyses were employed to compare the transcriptome of Runx1 -/- CD4(+) T cells to those of unstimulated and TCR-stimulated Runx1 +/- cells. The results identified genes whose expression was modulated similarly by Runx1 deletion and TCR activation. Among them, genes encoding cytokines, chemokines, and Jak/STAT signaling molecules were substantially induced. In Runx1-deleted T cells, simultaneous increases in Il-17A and Rorγc, a known master gene in TH17 differentiation, were observed. In addition, we observed that the loss of Runx1 reduced the transcription of genes encoding quiescence-associated transcription factors, including Foxp1, Foxo1, and Klf2. Interestingly, we identified consensus Runx1 binding sites at the promoter regions of Foxp1, Foxo1, and Klf2 genes, which can be enriched by chromatin immunoprecipitation assay with an anti-Runx1 antibody. Therefore, we suggest that Runx1 may activate, directly or indirectly, the expression of quiescence-associated molecules and thereby contribute to the maintenance of quiescence in CD4(+) T cells.
  6. Koh CP, Bahirvani AG, Wang CQ, Yokomizo T, Ng CEL, Du L, et al.
    Gene, 2023 Jan 30;851:147049.
    PMID: 36384171 DOI: 10.1016/j.gene.2022.147049
    A cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreERT2 transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24 m). Kinetic analysis of labeled cells after tamoxifen injection and transplantation assays revealed that eR1-driven CreERT2 activity marks dormant adult HSCs which slowly but steadily contribute to unperturbed hematopoiesis. Fetal and child HSCs that are uniformly or intermediately active were also efficiently targeted. Notably, a gene ablation at distinct developmental stages, enabled by this system, resulted in different phenotypes. Similarly, an oncogenic Kras induction at distinct ages caused different spectrums of malignant diseases. These results demonstrate that the eR1-CreERT2 Tg mouse serves as a powerful resource for the analyses of both normal and malignant HSCs at all developmental stages.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links