This study investigated the optimal synthesis conditions for the production of Raffia Palm Shell Activated Carbon (RPSAC) using phosphoric acid as activation agent. The optimization of the synthesis conditions was achieved using the Central Composite Design (CDD) in Response Surface Methodology (RSM). The influences of impregnation ratio, temperature, time and concentration on the specific surface area and yield of RPSAC were evaluated. Based on the CDD, 2FI and quadratic models were developed for the two responses. Analysis of Variance (ANOVA) was utilized to determine the significant factors and factor interactions for each response. All process variables except impregnation ratio were observed to significantly influence the quality of RPSAC. The optimal synthesis conditions for RPSAC were; 523.68 °C, 76.91%, and 103.83 min for temperature, concentration, and time respectively which provided a specific surface area and yield of 1762.92 m2/g and 77.98 % respectively. The Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray (EDX) analyses proved that RPSAC had a meso-micro-porous morphology with high carbon and oxygen contents. Fourier-transform infrared spectroscopy (FTIR) revealed the abundance of hydroxyl, carbonyl and carboxylic groups on RPSAC. X-ray Powder Diffraction (XRD) analysis showed that RPSAC composed mainly of amorphous and disordered microcrystalline phases ascribed to the high quartz content of the precursor. The Brunauer-Emmett-Teller (BET) surface area, average pore diameter, total pore volume, and pHpzc of RPSAC were obtained as 456.10 m2/g, 0.25 cm3/g, 2.13 nm and 2.10 correspondingly. Thus, RSM was found to be an excellent and desirable tool for optimal synthesis of RPSAC that possess high surface area and porosity suitable for application in the adsorption of both large and small molecular sized pollutants such as dyes and fluoride in real and aqueous solution.