Displaying all 5 publications

Abstract:
Sort:
  1. Srikanta Murthy A, Azis N, Jasni J, Othman ML, Mohd Yousof MF, Talib MA
    PLoS One, 2020;15(10):e0240368.
    PMID: 33035254 DOI: 10.1371/journal.pone.0240368
    This study presents an investigation on the effect of shield placement for mitigation of transient voltage in a 33/11 kV, 30 MVA transformer due to Standard Switching Impulse (SSI) and Oscillating Switching Impulse (OSI) surges. Generally, the winding and insulation in transformers could experience severe voltage stress due to the external impulses i.e. switching events. Hence, it is important to examine the voltage stress and identify the mitigation action i.e. shield placements in order to reduce the adverse effect to the transformer windings. First, the resistances, inductances, and capacitances (RLC) were calculated for disc type transformer in order to develop the winding RLC equivalent circuit. The SSI and OSI transient voltage waveforms were applied to the High Voltage (HV) winding whereby the transient voltages were simulated for each disc. The resulting voltage stresses were mitigated through different configurations of electrostatic shield placements. The resonant oscillations generated due to switching surges were analysed through initial voltage distribution. The analyses on the transient voltages of the transformer winding and standard error of the slope (SEb) reveal that the location of shield placement has a significant effect on the resonant switching voltages. The increment of the shield number in the windings does not guarantee optimize mitigation of the resonant switching transient voltages. It is found that the voltage stress along the windings is linear once a floating shield is placed between the HV and Low Voltage (LV) windings of the disc-type transformer under the SSI and OSI waveforms. These findings could assist the manufacturers with appropriate technical basis for mitigation of the transformer winding against the external transient switching overvoltage surges.
  2. Srikanta Murthy A, Azis N, Jasni J, Othman ML, Mohd Yousof MF, Talib MA
    PLoS One, 2020;15(8):e0236409.
    PMID: 32853253 DOI: 10.1371/journal.pone.0236409
    This paper proposes an alternative approach to extract transformer's winding parameters of resistance (R), inductance (L), capacitance (C) and conductance (G) based on Finite Element Method (FEM). The capacitance and conductance were computed based on Fast Multiple Method (FMM) and Method of Moment (MoM) through quasi-electrostatics approach. The AC resistances and inductances were computed based on MoM through quasi-magnetostatics approach. Maxwell's equations were used to compute the DC resistances and inductances. Based on the FEM computed parameters, the frequency response of the winding was obtained through the Bode plot function. The simulated frequency response by FEM model was compared with the simulated frequency response based on the Multi-conductor Transmission Line (MTL) model and the measured frequency response of a 33/11 kV, 30 MVA transformer. The statistical indices such as Root Mean Square Error (RMSE) and Absolute Sum of Logarithmic Error (ASLE) were used to analyze the performance of the proposed FEM model. It is found that the simulated frequency response by FEM model is quite close to measured frequency response at low and mid frequency regions as compared to simulated frequency response by MTL model based on RMSE and ASLE analysis.
  3. Islam SZ, Othman ML, Saufi M, Omar R, Toudeshki A, Islam SZ
    PLoS One, 2020;15(11):e0241927.
    PMID: 33180779 DOI: 10.1371/journal.pone.0241927
    This study analyzes the performance of two PV modules, amorphous silicon (a-Si) and crystalline silicon (c-Si) and predicts energy yield, which can be seen as facilitation to achieve the target of 35% reduction of greenhouse gases emission by 2030. Malaysia Energy Commission recommends crystalline PV modules for net energy metering (NEM), but the climate regime is a concern for output power and efficiency. Based on rainfall and irradiance data, this study aims to categorize the climate of peninsular Malaysia into rainy and dry seasons; and then the performance of the two modules are evaluated under the dry season. A new mathematical model is developed to predict energy yield and the results are validated through experimental and systematic error analysis. The parameters are collected using a self-developed ZigBeePRO-based wireless system with the rate of 3 samples/min over a period of five days. The results unveil that efficiency is inversely proportional to the irradiance due to negative temperature coefficient for crystalline modules. For this phenomenon, efficiency of c-Si (9.8%) is found always higher than a-Si (3.5%). However, a-Si shows better shadow tolerance compared to c-Si, observed from a lesser decrease rate in efficiency of the former with the increase in irradiance. Due to better spectrum response and temperature coefficient, a-Si shows greater performance on output power efficiency (OPE), performance ratio (PR), and yield factor. From the regression analysis, it is found that the coefficient of determination (R2) is between 0.7179 and 0.9611. The energy from the proposed model indicates that a-Si yields 15.07% higher kWh than c-Si when luminance for recorded days is 70% medium and 30% high. This study is important to determine the highest percentage of energy yield and to get faster NEM payback period, where as of now, there is no such model to indicate seasonal energy yield in Malaysia.
  4. Islam MZ, Othman ML, Abdul Wahab NI, Veerasamy V, Opu SR, Inbamani A, et al.
    PLoS One, 2021;16(8):e0256050.
    PMID: 34383821 DOI: 10.1371/journal.pone.0256050
    This study presents a nature-inspired, and metaheuristic-based Marine predator algorithm (MPA) for solving the optimal power flow (OPF) problem. The significant insight of MPA is the widespread foraging strategy called the Levy walk and Brownian movements in ocean predators, including the optimal encounter rate policy in biological interaction among predators and prey which make the method to solve the real-world engineering problems of OPF. The OPF problem has been extensively used in power system operation, planning, and management over a long time. In this work, the MPA is analyzed to solve the single-objective OPF problem considering the fuel cost, real and reactive power loss, voltage deviation, and voltage stability enhancement index as objective functions. The proposed method is tested on IEEE 30-bus test system and the obtained results by the proposed method are compared with recent literature studies. The acquired results demonstrate that the proposed method is quite competitive among the nature-inspired optimization techniques reported in the literature.
  5. Vinayagam A, Othman ML, Veerasamy V, Saravan Balaji S, Ramaiyan K, Radhakrishnan P, et al.
    PLoS One, 2022;17(1):e0262570.
    PMID: 35085307 DOI: 10.1371/journal.pone.0262570
    This study proposes SVM based Random Subspace (RS) ensemble classifier to discriminate different Power Quality Events (PQEs) in a photovoltaic (PV) connected Microgrid (MG) model. The MG model is developed and simulated with the presence of different PQEs (voltage and harmonic related signals and distinctive transients) in both on-grid and off-grid modes of MG network, respectively. In the pre-stage of classification, the features are extracted from numerous PQE signals by Discrete Wavelet Transform (DWT) analysis, and the extracted features are used to learn the classifiers at the final stage. In this study, first three Kernel types of SVM classifiers (Linear, Quadratic, and Cubic) are used to predict the different PQEs. Among the results that Cubic kernel SVM classifier offers higher accuracy and better performance than other kernel types (Linear and Quadradic). Further, to enhance the accuracy of SVM classifiers, a SVM based RS ensemble model is proposed and its effectiveness is verified with the results of kernel based SVM classifiers under the standard test condition (STC) and varying solar irradiance of PV in real time. From the final results, it can be concluded that the proposed method is more robust and offers superior performance with higher accuracy of classification than kernel based SVM classifiers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links