Displaying all 3 publications

Abstract:
Sort:
  1. Owolabi TO, Abd Rahman MA
    Polymers (Basel), 2021 Aug 12;13(16).
    PMID: 34451237 DOI: 10.3390/polym13162697
    We developed particle swarm optimization-based support vector regression (PSVR) and ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap (E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics. The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values. The models had low mean absolute percentage errors after validation with external data. The precision demonstrated by these predictive models will enhance the tailoring of the optical properties of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties will be reduced.
  2. Akomolafe O, Owolabi TO, Abd Rahman MA, Awang Kechik MM, Yasin MNM, Souiyah M
    Materials (Basel), 2021 Aug 16;14(16).
    PMID: 34443126 DOI: 10.3390/ma14164604
    Structural transformation and magnetic ordering interplays for emergence as well as suppression of superconductivity in 122-iron-based superconducting materials. Electron and hole doping play a vital role in structural transition and magnetism suppression and ultimately enhance the room pressure superconducting critical temperature of the compound. This work models the superconducting critical temperature of 122-iron-based superconductor using tetragonal to orthorhombic lattice (LAT) structural transformation during low-temperature cooling and ionic radii of the dopants as descriptors through hybridization of support vector regression (SVR) intelligent algorithm with particle swarm (PS) parameter optimization method. The developed PS-SVR-RAD model, which utilizes ionic radii (RAD) and the concentrations of dopants as descriptors, shows better performance over the developed PS-SVR-LAT model that employs lattice parameters emanated from structural transformation as descriptors. Using the root mean square error (RMSE), coefficient of correlation (CC) and mean absolute error as performance measuring criteria, the developed PS-SVR-RAD model performs better than the PS-SVR-LAT model with performance improvement of 15.28, 7.62 and 72.12%, on the basis of RMSE, CC and Mean Absolute Error (MAE), respectively. Among the merits of the developed PS-SVR-RAD model over the PS-SVR-LAT model is the possibility of electrons and holes doping from four different dopants, better performance and ease of model development at relatively low cost since the descriptors are easily fetched ionic radii. The developed intelligent models in this work would definitely facilitate quick and precise determination of critical transition temperature of 122-iron-based superconductor for desired applications at low cost with experimental stress circumvention.
  3. Al-Sodani KAA, Adewumi AA, Mohd Ariffin MA, Maslehuddin M, Ismail M, Salami HO, et al.
    Materials (Basel), 2021 Jun 03;14(11).
    PMID: 34205101 DOI: 10.3390/ma14113049
    This paper presents the outcome of work conducted to develop models for the prediction of compressive strength (CS) of alkali-activated limestone powder and natural pozzolan mortar (AALNM) using hybrid genetic algorithm (GA) and support vector regression (SVR) algorithm, for the first time. The developed hybrid GA-SVR-CS1, GA-SVR-CS3, and GA-SVR-CS14 models are capable of estimating the one-day, three-day, and 14-day compressive strength, respectively, of AALNM up to 96.64%, 90.84%, and 93.40% degree of accuracy as measured on the basis of correlation coefficient between the measured and estimated values for a set of data that is excluded from training and testing phase of the model development. The developed hybrid GA-SVR-CS28E model estimates the 28-days compressive strength of AALNM using the 14-days strength, it performs better than hybrid GA-SVR-CS28C model, hybrid GA-SVR-CS28B model, hybrid GA-SVR-CS28A model, and hybrid GA-SVR-CS28D model that respectively estimates the 28-day compressive strength using three-day strength, one day-strength, all the descriptors and seven day-strength with performance improvement of 103.51%, 124.47%, 149.94%, and 262.08% on the basis of root mean square error. The outcome of this work will promote the use of environment-friendly concrete with excellent strength and provide effective as well as efficient ways of modeling the compressive strength of concrete.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links