Displaying all 2 publications

Abstract:
Sort:
  1. Porwal P, Pachade S, Kokare M, Giancardo L, Mériaudeau F
    Comput Biol Med, 2018 11 01;102:200-210.
    PMID: 30308336 DOI: 10.1016/j.compbiomed.2018.09.028
    Age-related Macular Degeneration (AMD) and Diabetic Retinopathy (DR) are the most prevalent diseases responsible for visual impairment in the world. This work investigates discrimination potential in the texture of color fundus images to distinguish between diseased and healthy cases by avoiding the prior lesion segmentation step. It presents a retinal background characterization approach and explores the potential of Local Tetra Patterns (LTrP) for texture classification of AMD, DR and Normal images. Five different experiments distinguishing between DR - normal, AMD - normal, DR - AMD, pathological - normal and AMD - DR - normal cases were conducted and validated using the proposed approach, and promising results were obtained. For all five experiments, different classifiers namely, AdaBoost, c4.5, logistic regression, naive Bayes, neural network, random forest and support vector machine were tested. We experimented with three public datasets, ARIA, STARE and E-Optha. Further, the performance of LTrP is compared with other texture descriptors, such as local phase quantization, local binary pattern and local derivative pattern. In all cases, the proposed method obtained the area under the receiver operating characteristic curve and f-score values higher than 0.78 and 0.746 respectively. It was found that both performance measures achieve over 0.995 for DR and AMD detection using a random forest classifier. The obtained results suggest that the proposed technique can discriminate retinal disease using texture information and has potential to be an important component for an automated screening solution for retinal images.
  2. Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W, et al.
    Med Image Anal, 2020 01;59:101561.
    PMID: 31671320 DOI: 10.1016/j.media.2019.101561
    Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links