The prevalence of hypertension is very common amongst the diabetic patients and is reported as the major cause of mortality in diabetes. Pioglitazone reported to have an ability to alter the blood cholesterol level and cardioprotective efficiency along with its antidiabetic activity. Telmisartan, through activation of PPAR-γ receptor exerts insulin sensitizing property in addition to its primary cardioprotective efficiency. Theoretically, a combination of pioglitazone and telmisartan may be beneficial to effectively control the high blood glucose level and management of coexisting cardiovascular complication in diabetes. The aim of this research was to experimentally evaluate the pharmacokinetic interaction of pioglitazone and telmisartan when are coadministered in rat. Pioglitazone and telmisartan were administered orally as a single dose individually and in combination to the rats. The plasma samples of the pharmacokinetic study were analyzed using a validated LCMS method. The acute toxicity of the combination with a high dose in rats was also evaluated as a part of the determination of its safety profile. There was no significant change in pharmacokinetic parameters were resulted due to the coadministration of pioglitazone and telmisartan in rat. Absence of major toxicological effect supports the in vivosafety of the combination.
Alginate pellets prepared by the aqueous agglomeration technique experience fast drug dissolution due to the porous pre-formed calcium alginate microstructure.
Management of cardiovascular risk factors in diabetes demands special attention due to their co-existence. Pioglitazone (PIO) and telmisartan (TLM) combination can be beneficial in effective control of cardiovascular complication in diabetes. In this research, we developed and validated a high throughput LC-MS/MS method for simultaneous quantitation of PIO and TLM in rat plasma. This developed method is more sensitive and can quantitate the analytes in relatively shorter period of time compared to the previously reported methods for their individual quantification. Moreover, till date, there is no bioanalytical method available to simultaneously quantitate PIO and TLM in a single run. The method was validated according to the USFDA guidelines for bioanalytical method validation. A linear response of the analytes was observed over the range of 0.005-10 µg/mL with satisfactory precision and accuracy. Accuracy at four quality control levels was within 94.27%-106.10%. The intra- and inter-day precision ranged from 2.32%-10.14 and 5.02%-8.12%, respectively. The method was reproducible and sensitive enough to quantitate PIO and TLM in rat plasma samples of a preclinical pharmacokinetic study. Due to the potential of PIO-TLM combination to be therapeutically explored, this method is expected to have significant usefulness in future.
Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients.
Oral paclitaxel (PTXL) formulations freed from cremophor® EL (CrEL) is always in utmost demand by the cancerous patients due to toxicities associated with the currently marketed formulation. In our previous investigation [Int. J. Pharm. 2014; 460:131], we have developed an oral oil based nanocarrier for the lipophilic drug, PTXL to target bioavailability issue and patient compliance. Here, we report in vivo antitumor activity and 28-day sub-chronic toxicity of the developed PTXL nanoemulsion. It was observed that the apoptotic potential of oral PTXL nanoemulsion significantly inhibited the growth of solid tumor (59.2 ± 7.17%; p