Displaying all 3 publications

Abstract:
Sort:
  1. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
  2. Lau YL, Lai MY, Anthony CN, Chang PY, Palaeya V, Fong MY, et al.
    Am J Trop Med Hyg, 2015 Jan;92(1):28-33.
    PMID: 25385862 DOI: 10.4269/ajtmh.14-0309
    In this study, three molecular assays (real-time multiplex polymerase chain reaction [PCR], merozoite surface antigen gene [MSP]-multiplex PCR, and the PlasmoNex Multiplex PCR Kit) have been developed for diagnosis of Plasmodium species. In total, 52 microscopy-positive and 20 malaria-negative samples were used in this study. We found that real-time multiplex PCR was the most sensitive for detecting P. falciparum and P. knowlesi. The MSP-multiplex PCR assay and the PlasmoNex Multiplex PCR Kit were equally sensitive for diagnosing P. knowlesi infection, whereas the PlasmoNex Multiplex PCR Kit and real-time multiplex PCR showed similar sensitivity for detecting P. vivax. The three molecular assays displayed 100% specificity for detecting malaria samples. We observed no significant differences between MSP-multiplex PCR and the PlasmoNex multiplex PCR kit (McNemar's test: P = 0.1489). However, significant differences were observed comparing real-time multiplex PCR with the PlasmoNex Multiplex PCR Kit (McNemar's test: P = 0.0044) or real-time multiplex PCR with MSP-multiplex PCR (McNemar's test: P = 0.0012).
  3. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links