Displaying all 5 publications

Abstract:
Sort:
  1. Behera MR, Chun C, Palani S, Tkalich P
    Mar Pollut Bull, 2013 Dec 15;77(1-2):380-95.
    PMID: 24139643 DOI: 10.1016/j.marpolbul.2013.09.043
    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales.
  2. Selvavinayagam ST, Yong YK, Tan HY, Zhang Y, Subramanian G, Rajeshkumar M, et al.
    Front Med (Lausanne), 2022;9:887974.
    PMID: 35770011 DOI: 10.3389/fmed.2022.887974
    BACKGROUND: The magnitude of protection conferred following recovery from COVID-19 or by vaccine administration, and the duration of protective immunity developed, remains ambiguous.

    METHODS: We investigated the factors associated with anti-SARS-CoV-2 S1 IgG decay in 519 individuals who recovered from COVID-19 illness or received COVID-19 vaccination with two commercial vaccines, viz., an adenoviral vector-based (AZD1222) and a whole-virion-based inactivated (BBV152) vaccine in Chennai, India from March to December 2021. Blood samples collected during regular follow-up post-infection/-vaccination were examined for anti-SARS-CoV-2 S1 IgG by a commercial automated chemiluminescent immunoassay (CLIA).

    RESULTS: Age and underlying comorbidities were the two variables that were independently associated with the development of a breakthrough infection. Individuals who were >60 years of age with underlying comorbid conditions (viz., hypertension, diabetes mellitus and cardiovascular disease) had a ~15 times and ~10 times greater odds for developing a breakthrough infection and hospitalization, respectively. The time elapsed since the first booster dose was associated with attrition in anti-SARS-CoV-2 IgG, where each month passed was associated with an ebb in the anti-SARS-CoV-2 IgG antibody levels by a coefficient of -6 units.

    CONCLUSIONS: Our findings advocate that the elderly with underlying comorbidities be administered with appropriate number of booster doses with AZD1222 and BBV152 against COVID-19.

  3. Selvavinayagam ST, Yong YK, Joseph N, Hemashree K, Tan HY, Zhang Y, et al.
    Front Public Health, 2022;10:1018399.
    PMID: 36211690 DOI: 10.3389/fpubh.2022.1018399
    The rapid spread of SARS-CoV-2 variants in the global population is indicative of the development of selective advantages in emerging virus strains. Here, we performed a case-control investigation of the clinical and demographic characteristics, clinical history, and virological markers to predict disease progression in hospitalized adults for COVID-19 between December 2021 and January 2022 in Chennai, India. COVID-19 diagnosis was made by a commercial TaqPath COVID-19 RT-PCR, and WGS was performed with the Ion Torrent Next Generation Sequencing System. High-quality (<5% of N) complete sequences of 73 Omicron B.1.1.529 variants were randomly selected for phylogenetic analysis. SARS-CoV-2 viral load, number of comorbidities, and severe disease presentation were independently associated with a shorter time-to-death. Strikingly, this was observed among individuals infected with Omicron BA.2 but not among those with the BA.1.1.529, BA.1.1, or the Delta B.1.617.2 variants. Phylogenetic analysis revealed severe cases predominantly clustering under the BA.2 lineage. Sequence analyses showed 30 mutation sites in BA.1.1.529 and 33 in BA.1.1. The mutations unique to BA.2 were T19I, L24S, P25del, P26del, A27S, V213G, T376A, D405N and R408S. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and the Omicron BA.1.1.529 variant but not with Omicron BA.1.1 or BA.2 suggests that the newer strains are largely immune escape variants. The number of vaccine doses received was independently associated with increased odds of developing asymptomatic disease or recovery. We propose that the novel mutations reported herein could likely bear a significant impact on the clinical characteristics, disease progression, and epidemiological aspects of COVID-19. Surging rates of mutations and the emergence of eclectic variants of SARS-CoV-2 appear to impact disease dynamics.
  4. Selvavinayagam ST, Karishma SJ, Hemashree K, Yong YK, Suvaithenamudhan S, Rajeshkumar M, et al.
    PMID: 38076717 DOI: 10.1016/j.lansea.2023.100272
    BACKGROUND: Despite the continued vaccination efforts, there had been a surge in breakthrough infections, and the emergence of the B.1.1.529 omicron variant of SARS-CoV-2 in India. There is a paucity of information globally on the role of newer XBB variants in community transmission. Here, we investigated the mutational patterns among hospitalised patients infected with the XBB omicron sub-variant, and checked if there was any association between the rise in the number of COVID-19 cases and the observed novel mutations in Tamil Nadu, India.

    METHODS: Nasopharyngeal and oropharyngeal swabs, collected from symptomatic and asymptomatic COVID-19 patients were subjected to real-time PCR followed by Next Generation Sequencing (NGS) to rule out the ambiguity of mutations in viruses isolated from the patients (n = 98). Using the phylogenetic association, the mutational patterns were used to corroborate clinico-demographic characteristics and disease severity among the patients.

    FINDINGS: Overall, we identified 43 mutations in the S gene across 98 sequences, of which two were novel mutations (A27S and T747I) that have not been reported previously with XBB sub-variants in the available literature. Additionally, the XBB sequences from our cohort had more mutations than omicron B.1.1.529. The phylogenetic analysis comprising six major branches clearly showed convergent evolution of XBB. Our data suggests that age, and underlying conditions (e.g., diabetes, hypertension, and cardiovascular disease) or secondary complications confers increased susceptibility to infection rather than vaccination status or prior exposure. Many vaccinated individuals showed evidence of a breakthrough infection, with XBB.3 being the predominant variant identified in the study population.

    INTERPRETATION: Our study indicates that the XBB variant is highly evasive from available vaccines and may be more transmissible, and potentially could emerge as the 'next' predominant variant, which likely could overwhelm the existing variants of SARS-CoV-2 omicron variants.

    FUNDING: National Health Mission (India), SIDASARC, VINNMER (Sweden), ORIP/NIH (USA).

  5. Selvavinayagam ST, Sankar S, Yong YK, Anshad AR, Chandramathi S, Somasundaram A, et al.
    PLOS Glob Public Health, 2024;4(11):e0003608.
    PMID: 39570962 DOI: 10.1371/journal.pgph.0003608
    The decline in dengue incidence and/or prevalence during the COVID-19 pandemic (2020-22) appears to be attributed to reduced treatment-seeking rates, under-reporting, misdiagnosis, disrupted health services and reduced exposure to mosquito vectors due to prevailing lockdowns. There is limited scientific data on dengue virus (DENV) disease during the COVID-19 pandemic. Here, we conducted a community-based, cross-sectional, cluster-randomized survey to assess anti-DENV and anti-SARS-CoV-2 seroprevalence, and also estimated the spatial distribution of DENV-positive aedine mosquito vectors during the COVID-19 pandemic across all the 38 districts of Tamil Nadu, India. Using real-time PCR, the prevalence of DENV in mosquito pools during 2021 was analyzed and compared with the previous and following years of vector surveillance, and correlated with anti-DENV IgM and IgG levels in the population. Results implicate that both anti-DENV IgM and IgG seroprevalence and DENV positivity in mosquito pools were reduced across all the districts. A total of 13464 mosquito pools and 5577 human serum samples from 186 clusters were collected. Of these, 3.76% of the mosquito pools were positive for DENV. In the human sera, 4.12% were positive for anti-DENV IgM and 6.4% for anti-DENV IgG. While the anti-SARS-CoV-2 levels significantly correlated with overall DENV seropositivity, COVID-19 vaccination status significantly correlated with anti-DENV IgM levels. The study indicates a profound impact of anti-SARS-CoV-2 levels on DENV-positive mosquito pools and seropositivity. Continuous monitoring of anti-DENV antibody levels, especially with the evolving variants of SARS-CoV-2 and the surge in COVID-19 cases will shed light on the distribution, transmission and therapeutic attributes of DENV infection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links