Displaying all 2 publications

Abstract:
Sort:
  1. Aeinehvand MM, Weber L, Jiménez M, Palermo A, Bauer M, Loeffler FF, et al.
    Lab Chip, 2019 Feb 20.
    PMID: 30785443 DOI: 10.1039/c8lc00849c
    Reversible valves on centrifugal microfluidic platforms facilitate the automation of bioanalytical assays, especially of those requiring a series of steps (such as incubation) in a single reaction chamber. In this study, we present fixed elastic reversible (FER) valves and tunable elastic reversible (TER) valves that are easy to fabricate, implement and control. In the FER valve the compression of an elastic barrier/patch against a microchamber's outlet prevents the release of liquid. The valve sealing pressure was determined by adjusting the engraving depth of the valve-seat at which the elastic patch was located, this allows to set the sealing pressure during disc fabrication. In the TER valve, the patch compression value and sealing pressure is controlled by the penetration depth of a plastic screw into the valve-seat. The ER valves prevent liquid flow until the centrifugal force overcomes their sealing pressure. Moreover, at a constant spin speed, turning the screw of a TER valve reduces its sealing pressure and opens the valve. Therefore, the TER valve allows for controlling of the liquid transfer volume at various spin speeds. The FER and TER valves' behavior is mathematically described and equations for the prediction of their operation under centrifugal forces are provided. As a point-of-care (POC) application of ER valves, we have developed a microfluidic disc with a series of TER valves and peptide microarrays for automated multiplexed detection of five different proteins from a single serum sample.
  2. Rickard CM, Marsh NM, Larsen EN, McGrail MR, Graves N, Runnegar N, et al.
    Lancet, 2021 04 17;397(10283):1447-1458.
    PMID: 33865494 DOI: 10.1016/S0140-6736(21)00351-2
    BACKGROUND: The optimal duration of infusion set use to prevent life-threatening catheter-related bloodstream infection (CRBSI) is unclear. We aimed to compare the effectiveness and costs of 7-day (intervention) versus 4-day (control) infusion set replacement to prevent CRBSI in patients with central venous access devices (tunnelled cuffed, non-tunnelled, peripherally inserted, and totally implanted) and peripheral arterial catheters.

    METHODS: We did a randomised, controlled, assessor-masked trial at ten Australian hospitals. Our hypothesis was CRBSI equivalence for central venous access devices and non-inferiority for peripheral arterial catheters (both 2% margin). Adults and children with expected greater than 24 h central venous access device-peripheral arterial catheter use were randomly assigned (1:1; stratified by hospital, catheter type, and intensive care unit or ward) by a centralised, web-based service (concealed before allocation) to infusion set replacement every 7 days, or 4 days. This included crystalloids, non-lipid parenteral nutrition, and medication infusions. Patients and clinicians were not masked, but the primary outcome (CRBSI) was adjudicated by masked infectious diseases physicians. The analysis was modified intention to treat (mITT). This study is registered with the Australian New Zealand Clinical Trials Registry ACTRN12610000505000 and is complete.

    FINDINGS: Between May 30, 2011, and Dec, 9, 2016, from 6007 patients assessed, we assigned 2944 patients to 7-day (n=1463) or 4-day (n=1481) infusion set replacement, with 2941 in the mITT analysis. For central venous access devices, 20 (1·78%) of 1124 patients (7-day group) and 16 (1·46%) of 1097 patients (4-day group) had CRBSI (absolute risk difference [ARD] 0·32%, 95% CI -0·73 to 1·37). For peripheral arterial catheters, one (0·28%) of 357 patients in the 7-day group and none of 363 patients in the 4-day group had CRBSI (ARD 0·28%, -0·27% to 0·83%). There were no treatment-related adverse events.

    INTERPRETATION: Infusion set use can be safely extended to 7 days with resultant cost and workload reductions.

    FUNDING: Australian National Health and Medical Research Council.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links