Changes in the retinal size of stationary objects provide a cue to the observer's motion in the environment: Increases indicate the observer's forward motion, and decreases backward motion. In this study, a series of images each comprising a pair of pine-tree figures were translated into auditory modality using sensory substitution software. Resulting auditory stimuli were presented in an ascending sequence (i.e. increasing in intensity and bandwidth compatible with forward motion), descending sequence (i.e. decreasing in intensity and bandwidth compatible with backward motion), or in a scrambled order. During the presentation of stimuli, blindfolded participants estimated the lengths of wooden sticks by haptics. Results showed that those exposed to the stimuli compatible with forward motion underestimated the lengths of the sticks. This consistent underestimation may share some aspects with visual size-contrast effects such as the Ebbinghaus illusion. In contrast, participants in the other two conditions did not show such magnitude of error in size estimation; which is consistent with the "adaptive perceptual bias" towards acoustic increases in intensity and bandwidth. In sum, we report a novel cross-modal size-contrast illusion, which reveals that auditory motion cues compatible with listeners' forward motion modulate haptic representations of object size.
The sense of touch allows us to infer objects' physical properties, while the same input also produces affective sensations. These affective sensations are important for interpersonal relationships and personal well-being, which raises the possibility that tactile preferences are adapted to the characteristics of the skin. Previous studies examined how physical properties such as surface roughness and temperature influence affective sensations; however, little is known about the effect of compliance (physical correlate of softness) on pleasantness. Thus, we investigated the psychophysical link between softness and pleasantness. Pieces of human skin-like rubber with different compliances were pressed against participants' fingers. Two groups of participants numerically estimated the perceived magnitude of either pleasantness or softness. The perceived magnitude of pleasantness and softness both increased monotonically as a function of increasing object compliance, levelling off at around the end of the stimulus range. However, inter-subject variability was greater for pleasantness than for perceived softness, whereas the slope of the linear function fit to the magnitude estimates was steeper for softness than for pleasantness. These results indicate that object compliance is a critical physical determinant for pleasantness, whereas the effect of compliance on pleasantness was more variable among individuals than the effect on softness was.