Microporous, poly (ɛ-caprolactone) (PCL) matrices loaded with the antibacterial, metronidazole were produced by rapidly cooling suspensions of drug powder in PCL solutions in acetone. Drug incorporation in the matrices increased from 2.0% to 10.6% w/w on raising the drug loading of the PCL solution from 5% to 20% w/w measured with respect to the PCL content. Drug loading efficiencies of 40-53% were obtained. Rapid 'burst release' of 35-55% of the metronidazole content was recorded over 24 h when matrices were immersed in simulated vaginal fluid (SVF), due to the presence of large amounts of drug on matrix surface as revealed by Raman microscopy. Gradual release of around 80% of the drug content occurred over the following 12 days. Metronidazole released from PCL matrices in SVF retained antimicrobial activity against Gardnerella vaginalis in vitro at levels up to 97% compared to the free drug. Basic modelling predicted that the concentrations of metronidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration of metronidazole against G. vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of metronidazole in the treatment and prevention of bacterial vaginosis.
Polycaprolactone (PCL) matrices loaded with doxycycline were produced by rapidly cooling suspensions of the drug powder in PCL solution in acetone. Drug loadings of 5%, 10%, and 15% (w/w) of the PCL content were achieved. Exposure of doxycycline powder to matrix processing conditions in the absence of PCL revealed an endothermic peak at 65°C with the main peak at 167°C, suggesting solvatomorph formation. Rapid "burst release" of 24%-32% was measured within 24 h when matrices were immersed in simulated vaginal fluid (SVF) at 37°C, because of the presence of drug at or close to the matrix surface, which is further confirmed by scanning electron microscopy. Gradual release of 66%-76% of the drug content occurred over the following 14 days. SVF containing doxycycline released from drug-loaded PCL matrices retained 81%-90% antimicrobial activity compared with the nonformulated drug. The concentrations of doxycycline predicted to be released into vaginal fluid from a PCL matrix in the form of an intravaginal ring would be sufficient to kill Neisseria gonorrhoea and many other pathogens. These results indicate that PCL may be a suitable polymer for controlled intravaginal delivery of doxycycline for the treatment of sexually transmitted infections.