Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.
Traditional parallel computing for power management systems has prime challenges such as execution time, computational complexity, and efficiency like process time and delays in power system condition monitoring, particularly consumer power consumption, weather data, and power generation for detecting and predicting data mining in the centralized parallel processing and diagnosis. Due to these constraints, data management has become a critical research consideration and bottleneck. To cope with these constraints, cloud computing-based methodologies have been introduced for managing data efficiently in power management systems. This paper reviews the concept of cloud computing architecture that can meet the multi-level real-time requirements to improve monitoring and performance which is designed for different application scenarios for power system monitoring. Then, cloud computing solutions are discussed under the background of big data, and emerging parallel programming models such as Hadoop, Spark, and Storm are briefly described to analyze the advancement, constraints, and innovations. The key performance metrics of cloud computing applications such as core data sampling, modeling, and analyzing the competitiveness of big data was modeled by applying related hypotheses. Finally, it introduces a new design concept with cloud computing and eventually some recommendations focusing on cloud computing infrastructure, and methods for managing real-time big data in the power management system that solve the data mining challenges.