Methods: In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.
Results: Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89-3.14 per 10-5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10-5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors.
Conclusion: We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.
OBJECTIVE: To evaluate the association between long-term exposure to ambient air pollution and BC incidence.
DESIGN, SETTING, AND PARTICIPANTS: We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N=303431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10μm (PM10), <2.5μm (PM2.5), between 2.5 and 10μm (PM2.5-10), PM2.5absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRs) for BC incidence.
RESULTS AND LIMITATIONS: During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-μg/m3 increase in NO2 and 5-μg/m3 increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure.
CONCLUSIONS: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC.
PATIENT SUMMARY: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.
OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women.
METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.
RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04].
CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742.