Natural biopolymers have many attractive medical applications; however, complications due to fibrosis caused a reduction in diffusion and dispersal of nutrients and waste products. Consequently, severe immunocompatibility problems and poor mechanical and degradation properties in synthetic polymers ensue. Hence, the present study investigates a novel hydrogel material synthesized from caprolactone, ethylene glycol, ethylenediamine, polyethylene glycol, ammonium persulfate, and tetramethylethylenediamine via chemo-enzymatic route. Spectroscopic analyses indicated the formation of polyurea and polyhydroxyurethane as the primary building block of the hydrogel starting material. Biocompatibility studies showed positive observation in biosafety test using direct contact cytotoxicity assay in addition to active cellular growth on the hydrogel scaffold based on fluorescence observation. The synthesized hydrogel also exhibited (self)fluorescence properties under specific wavelength excitation. Hence, synthesized hydrogel could be a potential candidate for medical imaging as well as tissue engineering applications as a tissue expander, coating material, biosensor, and drug delivery system.
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.