The common structural feature of the title compounds, [Zn(C4H8NOS2)2(C5H5N)]·C5H5N (I) and [Zn(C5H10NOS2)2(C5H5N)]·C5H5N (II), which differ by having di-thio-carbamate N-bound methyl (I) and ethyl (II) groups, is the coordination of each ZnII atom by two non-symmetrically chelating di-thio-carbamate ligands and by a pyridine ligand; in each case, the non-coordinating pyridine mol-ecule is connected to the Zn-containing mol-ecule via a (hy-droxy)O-H⋯N(pyridine) hydrogen bond. The resulting NS4 coordination geometry is closer to a square-pyramid than a trigonal bipyramid in the case of (I), but almost inter-mediate between the two extremes in (II). The mol-ecular packing features (hy-droxy)O-H⋯O(hy-droxy) hydrogen bonds, leading to supra-molecular chains with a zigzag arrangement along [10-1] (I) or a helical arrangement along [010] (II). In (I), π-π [inter-centroid distances = 3.4738 (10) and 3.4848 (10) Å] between coordinating and non-coordinating pyridine mol-ecules lead to stacks comprising alternating rings along the a axis. In (II), weaker π-π contacts occur between centrosymmetrically related pairs of coordinating pyridine mol-ecules [inter-centroid separation = 3.9815 (14) Å]. Further inter-actions, including C-H⋯π(chelate) inter-actions in (I), lead to a three-dimensional architecture in each case.
The asymmetric unit of title salt co-crystal, [K(C9H11N2S2)(C12H24O6)], comprises a K(+) cation, an (-)S2CN(Et)py anion and a 18-crown-6 mol-ecule. Substantial delocalization of π-electron density is evident in the di-thio-carbamate anion, as indicated by the equivalent C-S bond lengths. The K(+) cation sits within an O6S2 donor set lying 0.7506 (6) Å out of the least-squares plane through the six O atoms (r.m.s. deviation = 0.1766 Å) of the 18-crown-6 mol-ecule with the two S atoms being on one side of this plane. Supra-molecular layers in the bc plane, sustained by C-H⋯O and C-H⋯π inter-actions, feature in the crystal packing.
The title compound, {[Zn(C9H11N2S2)2]·0.5C6H7N} n , comprises two independent, but chemically similar, Zn[S2CN(Et)CH2py]2 residues and a 4-methyl-pyridine solvent mol-ecule in the asymmetric unit. The Zn-containing units are connected into a one-dimensional coordination polymer (zigzag topology) propagating in the [010] direction, with one di-thio-carbamate ligand bridging in a μ2-κ(3) mode, employing one pyridyl N and both di-thio-carbamate S atoms, while the other is κ(2)-chelating. In each case, the resultant ZnNS4 coordination geometry approximates a square pyramid, with the pyridyl N atom in the apical position. In the crystal, the chains are linked into a three-dimensional architecture by methyl- and pyridyl-C-H⋯S, methyl-ene-C-H⋯N(pyrid-yl) and pyridyl-C-H⋯π(ZnS2C) inter-actions. The connection between the chain and the 4-methyl-pyridine solvent mol-ecule is of the type pyridyl-C-H⋯N(4-methyl-pyridine).
The title structures, [Zn2(C3H6NS2)4(C14H14N4O2)]·2C3H7NO (I) and [Zn2(C7H14NS2)4(C14H14N4O2)] (II), each feature a bidentate, bridging bipyridyl-type ligand encompassing a di-amide group. In (I), the binuclear compound is disposed about a centre of inversion, leading to an open conformation, while in (II), the complete mol-ecule is completed by the application of a twofold axis of symmetry so that the bridging ligand has a U-shape. In each of (I) and (II), the di-thio-carbamate ligands are chelating with varying degrees of symmetry, so the zinc atom is within an NS4 set approximating a square-pyramid for (I) and a trigonal-bipyramid for (II). The solvent di-methyl-formaide (DMF) mol-ecules in (I) connect to the bridging ligand via amide-N-H⋯O(DMF) and various amide-, DMF-C-H⋯O(amide, DMF) inter-actions. The resultant three-mol-ecule aggregates assemble into a three-dimensional architecture via C-H⋯π(pyridyl, chelate ring) inter-actions. In (II), undulating tapes sustained by amide-N-H⋯O(amide) hydrogen bonding lead to linear supra-molecular chains with alternating mol-ecules lying to either side of the tape; no further directional inter-actions are noted in the crystal.
The title compound, {[Cd(C9H11N2S2)2]·C6H7N} n , features two μ2-κ3-di-thio-carbamate ligands each of which chelates one CdII atom, via the S atoms, while simultaneously bridging to another via the pyridyl-N atom. The result is a two-dimensional coordination polymer extending parallel to the ab plane with square channels along the b axis. The CdII atom geometry is based on a distorted cis-N2S4 octa-hedron. The 3-methyl-pyridine mol-ecules reside in the channels aligned along the b axis, being held in place by methyl-ene-C-H⋯N(3-methyl-pyridine) and (3-methyl-pyridine)-C-H⋯π(pyrid-yl) inter-actions. Pyridyl-C-H⋯S and di-thio-carbamate-methyl-C-H⋯π(pyrid-yl) inter-actions provide connections between layers along the c axis.
The asymmetric unit of the title compound, [Cd2(C12H10N2)3(C6H12NOS2)4]·4C2H3N, comprises a Cd(II) atom, two di-thio-carbamate (dtc) anions, one and a half trans-1,2-dipyridin-4-yl-ethyl-ene (bpe) mol-ecules and two aceto-nitrile solvent mol-ecules. The full binuclear complex is generated by the application of a centre of inversion. The dtc ligands are chelating, one bpe mol-ecule coordinates in a monodentate mode while the other is bidentate bridging. The resulting cis-N2S4 coordination geometry is based on an octa-hedron. Supra-molecular layers, sustained by hy-droxy-O-H⋯O(hy-droxy) and hy-droxy-O-H⋯N(bpe) hydrogen bonding, inter-penetrate to form a three-dimensional architecture; voids in this arrangement are occupied by the aceto-nitrile solvent mol-ecules. Additional inter-molecular inter-actions falling within the specified framework have been analysed by Hirshfeld surface analysis, including π-π inter-actions.
The common feature of the mol-ecular structures of the title compounds, [Zn(C5H10NS2)2(C5H5NO)], (I), and [Zn(C4H8NOS2)2(C5H5NO)], (II), are NS4 donor sets derived from N-bound hy-droxy-pyridyl ligands and asymmetrically chelating di-thio-carbamate ligands. The resulting coordination geometries are highly distorted, being inter-mediate between square pyramidal and trigonal bipyramidal for both independent mol-ecules comprising the asymmetric unit of (I), and significantly closer towards square pyramidal in (II). The key feature of the mol-ecular packing in (I) is the formation of centrosymmetric, dimeric aggregates sustained by pairs of hy-droxy-O-H⋯S(di-thio-carbamate) hydrogen bonds. The aggregates are connected into a three-dimensional architecture by methyl-ene-C-H⋯O(hy-droxy) and methyl-C-H⋯π(chelate) inter-actions. With greater hydrogen-bonding potential, supra-molecular chains along the c axis are formed in the crystal of (II), sustained by hy-droxy-O-H⋯O(hy-droxy) hydrogen bonds, with ethyl-hydroxy and pyridyl-hydroxy groups as the donors, along with ethyl-hydroxy-O-H⋯S(di-thio-carbamate) hydrogen bonds. Chains are connected into layers in the ac plane by methyl-ene-C-H⋯π(chelate) inter-actions and these stack along the b axis, with no directional inter-actions between them. An analysis of the Hirshfeld surfaces clearly distinguished the independent mol-ecules of (I) and reveals the importance of the C-H⋯π(chelate) inter-actions in the packing of both (I) and (II).