In order to meet the rising global demand for food and to ensure food security in line with the United Nation's Sustainable Development Goal 2, technological advances have been introduced in the food production industry. The organic food industry has benefitted from advances in food technology and innovation. However, there remains skepticism regarding organic foods on the part of consumers, specifically on consumers' acceptance of food innovation technologies used in the production of organic foods. This study measured factors that influence consumers' food innovation adoption and subsequently their intention to purchase organic foods. We compared the organic foods purchase behavior of Malaysian and Hungarian consumers to examine differences between Asian and European consumers. The findings show food innovation adoption as the most crucial predictor for the intention to purchase organic foods in Hungary, while social lifestyle factor was the most influential in Malaysia. Other factors such as environmental concerns and health consciousness were also examined in relation to food innovation adoption and organic food consumerism. This paper discusses differences between European and Asian organic foods consumers and provides recommendations for stakeholders.
Giardia intestinalis is one of the most widespread intestinal parasites and is considered a major cause of epidemic or sporadic diarrhea worldwide. In this study, we aimed to develop a rapid aptameric diagnostic technique for G. intestinalis infection. First, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process generated DNA aptamers specific to a recombinant protein of the parasite's trophozoite. Ten selection rounds were performed; each round, the DNA library was incubated with the target protein conjugated to Sepharose beads. Then, the unbound sequences were removed by washing and the specific sequences were eluted and amplified by Polymerase Chain Reaction (PCR). Two aptamers were selected, and the dissociation constants (Kd), were determined as 2.45 and 16.95 nM, showed their high affinity for the G. intestinalis trophozoite protein. Subsequently, the aptamer sequence T1, which exhibited better affinity, was employed to develop a label-free electrochemical biosensor. A thiolated aptamer was covalently immobilized onto a gold screen-printed electrode (SPGE), and the binding of the targeted protein was monitored using square wave voltammetry (SWV). The developed aptasensor enabled accurate detection of the G. intestinalis recombinant protein within the range of 0.1 pg/mL to 100 ng/mL, with an excellent sensitivity (LOD of 0.35 pg/mL). Moreover, selectivity studies showed a negligible cross-reactivity toward other proteins such as bovine serum albumin, globulin, and G. intestinalis cyst protein.