Displaying all 2 publications

Abstract:
Sort:
  1. Lau YS, Mustafa MR, Choy KW, Chan SMH, Potocnik S, Herbert TP, et al.
    Sci Rep, 2018 01 29;8(1):1818.
    PMID: 29379034 DOI: 10.1038/s41598-018-19584-8
    Endoplasmic reticulum (ER) stress has been implicated in the development of hypertension 3 through the induction of endothelial impairment. As 3',4'-dihydroxyflavonol (DiOHF) 4 reduces vascular injury caused by ischaemia/reperfusion or diabetes, and flavonols have been demonstrated to attenuate ER stress, we investigated whether DiOHF can protect mice from ER stress-induced endothelial dysfunction. Male C57BLK/6 J mice were injected with tunicamycin to induce ER stress in the presence or absence of either DiOHF or tauroursodeoxycholic acid (TUDCA), an inhibitor of ER stress. Tunicamycin elevated blood pressure and impaired endothelium-dependent relaxation. Moreover, in aortae there was evidence of ER stress, oxidative stress and reduced NO production. This was coincident with increased NOX2 expression and reduced phosphorylation of endothelial nitric oxide synthase (eNOS) on Ser1176. Importantly, the effects of tunicamycin were significantly ameliorated by DiOHF or TUDCA. DiOHF also inhibited tunicamycin-induced ER stress and apoptosis in cultured human endothelial cells (HUVEC). These results provide evidence that ER stress is likely an important initiator of endothelial dysfunction through the induction of oxidative stress and a reduction in NO synthesis and that DiOHF directly protects against ER stress- induced injury. DiOHF may be useful to prevent ER and oxidative stress to preserve endothelial function, for example in hypertension.
  2. Chan SMH, Lau YS, Miller AA, Ku JM, Potocnik S, Ye JM, et al.
    Endocrinology, 2017 Oct 01;158(10):3162-3173.
    PMID: 28938442 DOI: 10.1210/en.2016-1879
    The metabolic syndrome is associated with an increase in the activation of the renin angiotensin system, whose inhibition reduces the incidence of new-onset diabetes. Importantly, angiotensin II (AngII), independently of its vasoconstrictor action, causes β-cell inflammation and dysfunction, which may be an early step in the development of type 2 diabetes. The aim of this study was to determine how AngII causes β-cell dysfunction. Islets of Langerhans were isolated from C57BL/6J mice that had been infused with AngII in the presence or absence of taurine-conjugated ursodeoxycholic acid (TUDCA) and effects on endoplasmic reticulum (ER) stress, inflammation, and β-cell function determined. The mechanism of action of AngII was further investigated using isolated murine islets and clonal β cells. We show that AngII triggers ER stress, an increase in the messenger RNA expression of proinflammatory cytokines, and promotes β-cell dysfunction in murine islets of Langerhans both in vivo and ex vivo. These effects were significantly attenuated by TUDCA, an inhibitor of ER stress. We also show that AngII-induced ER stress is required for the increased expression of proinflammatory cytokines and is caused by reactive oxygen species and IP3 receptor activation. These data reveal that the induction of ER stress is critical for AngII-induced β-cell dysfunction and indicates how therapies that promote ER homeostasis may be beneficial in the prevention of type 2 diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links