An integrative taxonomic analysis of the Sphenomorphus stellatus group recovered a newly discovered museum specimen from Phu Quoc Island, Kien Giang Province, Vietnam as a new species most closely related to S. preylangensis from Phnom Chi in central Cambodia, approximately 175 km to the northeast. Most notably, S. phuquocensis sp. nov. lacks the derived condition of having black dorsal stripes that diagnose S. annamiticus-the sister species to S. preylangensis plus S. phuquocensis sp. nov. A BioGeoBEARS analysis recovered the ancestor of the S. stellatus group to likely have ranged across forested regions on an exposed Sunda Shelf from southwestern Indochina to Peninsular Malaysia prior to diverging into northern and southern lineages separated by the Gulf of Thailand. Episodic fluctuations in sea levels and concomitant changes in the physiography of the Mekong Delta contributed to the fragmented distribution within and between species of the northern lineage. Sphenomorphus phuquocensis sp. nov. represents the second species of reptile endemic to Phu Quoc Island.
We provide an integrative taxonomic analysis of the Lipinia vittigera species complex from mainland Southeast Asia. Based on examination of external morphology, color pattern, and 681 base pairs of the cytochrome oxidase subunit I (COI) mitochondrial gene, we demonstrate the presence of four morphologically distinct lineages of Lipinia in Vietnam, Cambodia, Thailand, and Malaysia, showing a sequence divergence ranging 15.5%-20.4%. All discovered lineages are discretely diagnosable from one another by a combination of scalation traits and color patterns. A review of the published distribution data and a re-examination of available type material revealed the following results:(1) distribution of L. vittigera (Boulenger, 1894) sensu stricto is restricted to Sundaland and the Thai-Malay Peninsula south of the Isthmus of Kra; (2) L. microcercus (Boettger, 1901) stat. nov. is elevated to full species rank; the species has a wide distribution from central and southern Vietnam across Cambodia to eastern Thailand; we regard Lygosoma vittigerum kronfanum Smith, 1922 and Leiolopisma pranensis Cochran, 1930 as its junior synonyms; (3) Lipinia trivittatasp. nov. occurs in hilly areas of southern Vietnam, Cambodia, and eastern Thailand; and (4) Lipinia vassilievisp. nov. is currently known only from a narrow area along the Vietnamese-Cambodian border in the foothills of the central Annamite Mountain Range. We further provide an identification key for Lipinia occurring in mainland Southeast Asia.
We report on a new species, Micryletta dissimulanssp. nov., from the lowland forests of southern Thailand, which is described based on molecular and morphological evidence. The new species is characterized by a combination of the following characters: small body size (20.3-22.4 mm in males, 24.4-26.7 mm in females); slender body habitus; head longer than wide; snout rounded in dorsal and lateral view; eye length equal to snout length; tibiotarsal articulation reaching to tympanum; dorsal surface slightly granulated to shagreened; supratympanic fold indistinct, ventrally edged in black with large black spot behind eye; outer metatarsal tubercle absent; dorsum reddish-brown with merging irregular-shaped brown blotches edged in beige, no black spots on dorsum; body flanks brown with large black spots edged in whitish mottling, two large black blotches in axillary and inguinal areas on each side; lateral sides of head black, with white patches on lips absent, whitish mottling on tympanum and axillary region; ventral surface pinkish to bluish-gray, translucent, laterally with dark-brown marbled pattern, medially immaculate; throat in males dark-gray with sparse white mottling laterally; iris copper-orange. The new species is divergent from all other congeners in 16S rRNA gene sequences (5.0%-7.4%). To date, Micryletta dissimulanssp. nov. is only known from a single locality in Saba Yoi District, Songkhla Province, Thailand, at an elevation of 120 m a.s.l., but is also expected to occur in neighboring parts of Malaysia. We suggest Micryletta dissimulanssp. nov. be considered as a Data Deficient (DD) species following the IUCN's Red List categories (IUCN Standards and Petitions Committee, 2019).
Eutropis rugifera has long been identified as a widespread species complex distributed in Nicobar, Peninsular Malaysia, Greater Sundaic Islands, Bali, Sulawesi and the Philippines. This skink was described by Stoliczka in 1870 from Nicobar Island based on a single specimen (holotype by monotypy). Later, Peters (1871), Bartlett (1895) and Werner (1896) described three more species which were morphologically similar to Euprepes percarinatus (from Java), Mabuia rubricollis (Borneo) and M. quinquecarinata (Sumatra) respectively, which are currently considered junior objective synonyms of Eutropis rugifera. We examined all the available synonym types and voucher specimens of Eutropis rugifera deposited at several museums. A morphological examination of the types of this species and mtDNA analysis (584 bp of 16S rRNA) of the samples from different biogeographic regions revealed that Eutropis rugifera from Nicobar Island, Bali Island, and Bawean Island are composed of a monophyletic species. However, the taxonomic status of the above population requires further clarification, and the population in Bawean Island may represent a cryptic species. Finally, we provide a complete redescription of E. rugifera based on its holotype.
The gekkonid genus Cyrtodactylus is the third largest vertebrate genus on the planet with well over 300 species that range across at least eight biogeographic regions from South Asia to Melanesia. The ecological and morphological plasticity within the genus, has contributed to its ability to disperse across ephemeral seaways, river systems, basins, land bridges, and mountain ranges-followed by in situ diversification within specific geographic areas. Ancestral ranges were reconstructed on a mitochondrial phylogeny with 346 described and undescribed species from which it was inferred that Cyrtodactylus evolved in a proto-Himalaya region during the early Eocene. From there, it dispersed to what is currently Indoburma and Indochina during the mid-Eocene-the latter becoming the first major center of origin for the remainder of the genus that seeded dispersals to the Indian subcontinent, Papua, and Sundaland. Sundaland became a second major center of radiation during the Oligocene and gave rise to a large number of species that radiated further within Sundaland and dispersed to Wallacea, the Philippines, and back to Indochina. One Papuan lineage dispersed west to recolonize and radiate in Sundaland. Currently, Indochina and Sundaland still harbor the vast majority of species of Cyrtodactylus.
An integrative taxonomic analysis recovers a distinctive new species of the gekkonid genus Cyrtodactylus Gray, 1827 from Satun Province in extreme southern Thailand as the sister species to the Cyrtodactylus intermedius group of southern Indochina, approximately 600 km to the northeast across the Gulf of Thailand. Based on 1449 base pairs of the mitochondrial gene NADH dehydrogenase subunit 2 (ND2) and its flanking tRNAs, the new species, C. disjunctus sp. nov., bears a pairwise sequence divergence from the mean divergences of the intermedius group species ranging from 17.923.6%. Three different principal component analyses (PCA) and a multiple factor analysis (MFA) recover C. disjunctus sp. nov. as a highly distinctive karst cave-adapted species based on morphology and color pattern. Its sister species relationship to the intermedius groupto which it is added herefurther underscores a growing body of analyses that have recovered a trans-Gulf of Thailand connection across the submerged Sunda Shelf between the southern Thai-Malay Peninsula and southern Indochina. Fragmented karstic archipelagos stretching across Indochina have served as foci for the independent evolution of nearly 25% of the species of Cyrtodactylus. The description of C. disjunctus sp. nov. continues to highlight the fact that karstic habitats support an ever-increasing number of threatened site-specific endemics that compose much of the reptile diversity of many Asian nations but, as of yet, most of these landscapes have no legal protection.
Molecular phylogenetic analyses of the sister species Sphenomorphus stellatus and S. praesignis based on the mitochondrial genes 12S and 16S rRNA recover the former as paraphyletic with respect to the latter in that a specimen of S. stellatus from the type locality in Peninsular Malaysia is more closely related to S. praesignis than to Indochinese populations of S. stellatus. Furthermore, the phylogeny indicates that the Indochinese populations represent two species, thus resulting in four major lineages within this clade. These relationships are consistent with multivariate and univariate analyses of morphological and discrete color pattern data which statistically define and diagnose the four lineages and together with the molecular data, provide the foundation for robust, testable, species-level hypotheses. As such, S. stellatus is herein restricted to Peninsular Malaysia; S. annamiticus is resurrected for the circum-continental populations ranging through southeastern Thailand, southern Cambodia, and southern Vietnam; a new species-S. preylangensis sp. nov.-is described from an isolated mountain, Phnom Chi, from the Prey Lang Wildlife Sanctuary in central Cambodia; and the taxonomy of S. praesignis remains unchanged. The description of S. preylangensis sp. nov. underscores the necessity to conserve this remnant of lowland evergreen rainforest in the Prey Lang Wildlife Sanctuary.
Frogs of the genus Microhyla include some of the world's smallest amphibians and represent the largest radiation of Asian microhylids, currently encompassing 50 species, distributed across the Oriental biogeographic region. The genus Microhyla remains one of the taxonomically most challenging groups of Asian frogs and was found to be paraphyletic with respect to large-sized fossorial Glyphoglossus. In this study we present a time-calibrated phylogeny for frogs in the genus Microhyla, and discuss taxonomy, historical biogeography, and morphological evolution of these frogs. Our updated phylogeny of the genus with nearly complete taxon sampling includes 48 nominal Microhyla species and several undescribed candidate species. Phylogenetic analyses of 3,207 bp of combined mtDNA and nuDNA data recovered three well-supported groups: the Glyphoglossus clade, Southeast Asian Microhyla II clade (includes M. annectens species group), and a diverse Microhyla I clade including all other species. Within the largest major clade of Microhyla are seven well-supported subclades that we identify as the M. achatina, M. fissipes, M. berdmorei, M. superciliaris, M. ornata, M. butleri, and M. palmipes species groups. The phylogenetic position of 12 poorly known Microhyla species is clarified for the first time. These phylogenetic results, along with molecular clock and ancestral area analyses, show the Microhyla-Glyphoglossus assemblage to have originated in Southeast Asia in the middle Eocene just after the first hypothesized land connections between the Indian Plate and the Asian mainland. While Glyphoglossus and Microhyla II remained within their ancestral ranges, Microhyla I expanded its distribution generally east to west, colonizing and diversifying through the Cenozoic. The Indian Subcontinent was colonized by members of five Microhyla species groups independently, starting with the end Oligocene-early Miocene that coincides with an onset of seasonally dry climates in South Asia. Body size evolution modeling suggests that four groups of Microhyla have independently achieved extreme miniaturization with adult body size below 15 mm. Three of the five smallest Microhyla species are obligate phytotelm-breeders and we argue that their peculiar reproductive biology may be a factor involved in miniaturization. Body size increases in Microhyla-Glyphoglossus seem to be associated with a burrowing adaptation to seasonally dry habitats. Species delimitation analyses suggest a vast underestimation of species richness and diversity in Microhyla and reveal 15-33 undescribed species. We revalidate M. nepenthicola, synonymize M. pulverata with M. marmorata, and provide insights on taxonomic statuses of a number of poorly known species. Further integrative studies, combining evidence from phylogeny, morphology, advertisement calls, and behavior will result in a better systematic understanding of this morphologically cryptic radiation of Asian frogs.