Landfilling is the most widely used disposal method for municipal solid waste around the world. The main disadvantage of this strategy is formation of leachate, among other aspects. Landfill leachate contains highly toxic and bio-refractory substances that are detrimental to the environment and human health. Hence, the risk(s) of discharging potentially harmful landfill leachate into the environment need to be assessed and measured in order to make effective choices about landfill leachate management and treatment. In view of this, the present review aims to investigate (a) how landfill leachate is perceived as an emerging concern, and (b) the stakeholders' mid- to long-term policy priorities for implementing technological and integrative solutions to reduce the harmful effects of landfill leachate. Because traditional methods alone have been reported ineffective, and in response to emerging contaminants and stringent regulations, new effective and integrated leachate treatments have been developed. This study gives a forward-thinking of the accomplishments and challenges in landfill leachate treatment during the last decade. It also provides a comprehensive compilation of the formation and characterization of landfill leachate, the geo-environmental challenges that it raises, as well as the resource recovery and industrial linkage associated with it in order to provide an insight into its sustainable management.
The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.