Displaying all 2 publications

Abstract:
Sort:
  1. Chai CT, Putuhena FJ, Selaman OS
    Water Sci Technol, 2017 Dec;76(11-12):2988-2999.
    PMID: 29210686 DOI: 10.2166/wst.2017.472
    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.
  2. Seng DM, Putuhena FJ, Said S, Ling LP
    J Water Health, 2009 Mar;7(1):169-84.
    PMID: 18957785 DOI: 10.2166/wh.2009.103
    A city consumes a large amount of water. Urban planning and development are becoming more compelling due to the fact of growing competition for water, which has lead to an increasing and conflicting demand. As such, investments in water supply, sanitation and water resources management is a strong potential for a solid return. A pilot project of greywater ecological treatment has been established in Kuching city since 2003. Such a treatment facility opens up an opportunity of wastewater reclamation for reuse as secondary sources of water for non-consumptive purposes. This paper aims to explore the potential of the intended purposes in the newly developed ecological treatment project. By utilizing the Wallingford Software model, InfoWorks WS (Water Supply) is employed to carry out a hydraulic modeling of a hypothetical greywater recycling system as an integrated part of the Kuching urban water supply, where the greywater is treated, recycled and reused in the domestic environment. The modeling efforts have shown water savings of about 40% from the investigated system reinstating that the system presents an alternative water source worth exploring in an urban environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links