Graphene oxide (GO) has achieved significant progress in the material behaviour of cement-based materials. However, research on its structural behaviour in high-strength lightweight concrete (HSLWC) structures is limited, which restricts its engineering applications. This study focused on investigating the effects of low contents of GO on the shear behaviour of HSLWC beams. A total of four HSLWC beams with GO contents of 0, 0.01, 0.03 and 0.05% (by weight of cement) were designed to observe failure modes, load‒deformation curves, shear capacities, crack behaviour and load‒strain curves under four-point loading by a 300 kN servo loading device. The results revealed that all the beams exhibited shear compression failure. GO improved the shear capacity of the HSLWC beams, and this strengthening effect increased with increase in GO content. When the content of GO was 0.05%, the ultimate load of the beam reached a maximum, which was 39.2% greater than that of the control beam. GO can endow the HSLWC beams with a certain degree of ductility. In addition, a modified JGJ 12-2006 model was proposed to predict the shear capacity of HSLWC beams containing different GO contents on the basis of a comparison of typical models. This study can provide exploratory engineering practice for evaluating and designing GO-reinforced HSLWC structures.
Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.