Displaying all 3 publications

Abstract:
Sort:
  1. Alanazi HO, Abdullah AH, Qureshi KN
    J Med Syst, 2017 Apr;41(4):69.
    PMID: 28285459 DOI: 10.1007/s10916-017-0715-6
    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
  2. Alanazi HO, Abdullah AH, Qureshi KN, Ismail AS
    Ir J Med Sci, 2018 May;187(2):501-513.
    PMID: 28756541 DOI: 10.1007/s11845-017-1655-3
    INTRODUCTION: Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance.

    AIMS AND OBJECTIVES: In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life.

    CONCLUSION: The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

  3. Anwar M, Abdullah AH, Altameem A, Qureshi KN, Masud F, Faheem M, et al.
    Sensors (Basel), 2018 Sep 26;18(10).
    PMID: 30261628 DOI: 10.3390/s18103237
    Recent technological advancement in wireless communication has led to the invention of wireless body area networks (WBANs), a cutting-edge technology in healthcare applications. WBANs interconnect with intelligent and miniaturized biomedical sensor nodes placed on human body to an unattended monitoring of physiological parameters of the patient. These sensors are equipped with limited resources in terms of computation, storage, and battery power. The data communication in WBANs is a resource hungry process, especially in terms of energy. One of the most significant challenges in this network is to design energy efficient next-hop node selection framework. Therefore, this paper presents a green communication framework focusing on an energy aware link efficient routing approach for WBANs (ELR-W). Firstly, a link efficiency-oriented network model is presented considering beaconing information and network initialization process. Secondly, a path cost calculation model is derived focusing on energy aware link efficiency. A complete operational framework ELR-W is developed considering energy aware next-hop link selection by utilizing the network and path cost model. The comparative performance evaluation attests the energy-oriented benefit of the proposed framework as compared to the state-of-the-art techniques. It reveals a significant enhancement in body area networking in terms of various energy-oriented metrics under medical environments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links