Displaying all 8 publications

Abstract:
Sort:
  1. Fatahi S, Kord-Varkaneh H, Talaei S, Mardali F, Rahmani J, Ghaedi E, et al.
    Nutr Metab Cardiovasc Dis, 2019 11;29(11):1168-1175.
    PMID: 31582198 DOI: 10.1016/j.numecd.2019.07.011
    BACKGROUND AND AIM: Although some earlier studies have indicated the effect of phytosterol (PS) supplementation on serum lipoprotein(a) (Lp(a)) and free fatty acid (FFA) concentration, findings are still conflicting. We aimed to assess the impact of PS supplementation on serum Lp(a) and FFA concentration through a systematic review and meta-analysis of available RCTs.

    METHODS AND RESULTS: We performed a systematic search of all available RCTs conducted up to 21 February 2019 in the following databases: PubMed, Scopus, and Cochrane. The choice of fixed- or random-effect model for analysis was determined according to the I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). Pooling of 12 effect sizes from seven articles revealed a significant reduction of Lp(a) levels following PS supplementation (MD: -0.025 mg/dl, 95% CI: -0.045, -0.004, p = 0.017) without significant heterogeneity among the studies (I2 = 0.0%, p = 0.599). Also, PS supplementation significantly lowered FFA (MD: -0.138 mg/dl, 95% CI: -0.195, -0.081, p = 0.000) without significant heterogeneity among the studies (I2 = 0.0%, p = 0.911). The results for meta-regression and sensitivity analysis were not significant.

    CONCLUSION: The meta-analysis suggests that oral PS supplementation could cause a significant reduction in serum Lp(a) and FFA.

  2. Kord-Varkaneh H, Salehi-Sahlabadi A, Zarezade M, Rahmani J, Tan SC, Hekmatdoost A, et al.
    Asian Pac J Cancer Prev, 2020 05 01;21(5):1363-1367.
    PMID: 32458645 DOI: 10.31557/APJCP.2020.21.5.1363
    OBJECTIVE: Diet quality is known to influence cancer risk. The Healthy Eating Index (HEI) is one of the most frequently used measures of diet quality. However, the association between HEI-2015 and breast cancer risk is not known. The present study was undertaken to evaluate the association between HEI-2015 and breast cancer risk.

    METHODS: A case-control study comprising 134 breast cancer patients and 265 cancer-free controls were conducted. Dietary intakes were assessed using a validated food frequency questionnaire (FFQ), from which the HEI-2015 score was calculated. Logistic regression was used to derive the odds ratios (ORs) for measuring the association between HEI-2015 scores and breast cancer risk.

    RESULTS: Subjects in the top quartile of HEI-2015 had a 46% lower chance of breast cancer compared with subjects in the bottom quartile (OR 0.54; 95% CI 0.30, 0.98). After adjustment for potential confounders such as age, age at menarche, oral contraceptive drug use, menopausal status, marital status, body mass index, smoking and education level, the association between HEI-2015 score and a lower risk of breast cancer was enhanced (OR 0.32; 95% CI 0.16, 0.65).

    CONCLUSION: We successfully demonstrated that a higher HEI-2015 score was associated with a reduced breast cancer risk.

  3. Yang X, Kord-Varkaneh H, Talaei S, Clark CCT, Zanghelini F, Tan SC, et al.
    Pharmacol Res, 2020 01;151:104588.
    PMID: 31816435 DOI: 10.1016/j.phrs.2019.104588
    BACKGROUND: A meta-analysis is needed to comprehensively consolidate findings from the influence of metformin on IGF-1 levels. The present study was conducted with the objective to accurately evaluate the influence of metformin intake on IGF-1 levels via a meta-analysis of randomized controlled trials.

    METHODS: A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating the effects of metformin on serum IGF-1 levels.

    RESULTS: 11 studies involving a total of 569 individuals reported changes in IGF-1 plasma concentrations as an outcome measure. Pooled results demonstrated an overall non-significant decline in IGF-1 following metformin intake (WMD: -8.292 ng/ml, 95 % CI: -20.248, 3.664, p = 0.174) with heterogeneity among (p = 0.000,I2 = 87.1 %). The subgroup analyses displayed that intervention duration <12 weeks on children (WMD:-55.402 ng/ml, 95 % CI: -79.845, -30.960, I2 = 0.0 %) significantly reduced IGF-1. Moreover, in age 18 < years older metformin intake (WMD: 15.125 ng/ml, 95 % CI: 5.522, 24.729, I2 = 92.5 %) significantly increased IGF-1 than 18 ≤ years older (WMD:-1.038 ng/ml, 95 % CI: -3.578,1.502,I2 = 78.0 %). Following dose-response evaluation, metformin intake reduced IGF-1 (coefficient for dose-response analysis= -13.14, P = 0.041 and coefficient for liner analysis= -0.066, P = 0.038) significantly based on treatment duration.

    CONCLUSION: We found in children, intervention duration <12 weeks yielded significant reductions in IGF-1, whilst paradoxically, in participants >18 years old, metformin intake significantly increased IGF-1. We suggest that caution be taken when interpreting the findings of this review, particularly given the discordant supplementation practices between children and adults.

  4. Peng W, Mao P, Liu L, Chen K, Zhong Y, Xia W, et al.
    Complement Ther Med, 2020 Jan;48:102241.
    PMID: 31987255 DOI: 10.1016/j.ctim.2019.102241
    OBJECTIVE: Glucose disorders and dyslipidemia are closely associated with obesity and metabolic disease. The purpose of this study was to investigate the effect of Carnosine supplementation on lipid profile, fasting blood glucose, HbA1C and Insulin resistance.

    METHOD: MEDLINE/PubMed, Scopus and Web of sciences were investigated to identify relevant articles up to June 2019. The search strategy combined the Medical Subject Heading and Title and/or abstract keywords. The combined effect sizes were calculated as weight mean difference (WMD) using the random-effects model. Between study heterogeneity was evaluated by the Cochran's Q test and I2.

    RESULTS: Four RCTs studies investigated Carnosine use versus any control for at least 2 weeks were identified and analyzed. Overall results from the random-effects model on included studies, with 184 participants, indicated that carnosine intervention reduced HbA1C levels in intervention vs control groups (WMD: -0.92 %, 95 % CI: -1.20, -0.63, I2:69 %). Four studies, including a total of 183 participants, reported TG changes as an outcome measure variable, but combined results did not show significant reduction in this outcome (WMD: -14.46 mg/dl, 95 % CI: -29.11, 0.19, I2:94 %). Furthermore, combined results did not show any significant change in HOMA-IR, Cholesterol, fasting blood sugar, or HDL-C.

    CONCLUSION: Carnosine supplementation results in a decrease in HbA1C, but elicits no effect on HOMA-IR, Cholesterol, fasting blood sugar, TG and HDL-C. Future studies with a larger sample sizes, varied doses of carnosine, and population-specific sub-groups are warranted to confirm, and enhance, the veracity of our findings.

  5. Kord-Varkaneh H, Rinaldi G, Hekmatdoost A, Fatahi S, Tan SC, Shadnoush M, et al.
    Ageing Res Rev, 2020 01;57:100996.
    PMID: 31816443 DOI: 10.1016/j.arr.2019.100996
    BACKGROUND: Inconsistencies exist with regard to influence of vitamin D supplementation on IGF-1 levels. The inconsistencies could be attributed to several factors, such as dosage and duration of intervention, among others. To address these inconsistencies, this study was conducted to determine the impact of vitamin D supplementation on IGF-1 levels through a systematic review and meta-analysis of randomized controlled trials (RCTs).

    METHODS: A comprehensive systematic search was carried out in PubMed/MEDLINE, Web of Science, SCOPUS and Embase for RCTs that investigated the impact of vitamin D intake on circulating IGF-1 levels from inception until June 2019. Weighted mean difference (WMD) with the 95 % CI were applied for estimating combined effect size. Subgroup analysis was performed to specify the source of heterogeneity among studies.

    RESULTS: Pooled results from eight studies demonstrated an overall non-significant increase in IGF-1 following vitamin D supplementation (WMD: 4 ng/ml, 95 % CI: -4 to 11). However, a significant degree of heterogeneity among studies was observed (I2 = 66 %). The subgroup analyses showed that vitamin D dosage of ≤1000 IU/day (WMD: 10 ng/ml) significantly increased IGF-1 compared to the vitamin D dosage of <1000 IU/day (WMD: -1 ng/ml). Moreover, intervention duration ≤12 weeks (WMD: 11 ng/ml) significantly increased IGF-1 compared to intervention duration <12 weeks (WMD: -3 ng/ml). In the epidemiological cohort study, participants under 60 years of age with a higher dietary vitamin D intake had significantly higher IGF-1 levels when compared to those with lower dietary vitamin D intake in second categories.

    CONCLUSION: The main results indicate a non-significant increase in IGF-1 following vitamin D supplementation. Additionally, vitamin D dosages of <1000 IU/day and intervention durations of <12 weeks significantly raised IGF-1 levels.

  6. Wu M, Li M, Yuan J, Liang S, Chen Z, Ye M, et al.
    Pharmacol Res, 2020 05;155:104693.
    PMID: 32057896 DOI: 10.1016/j.phrs.2020.104693
    Hormone therapy continues to be a favourable option in the management of menopausal symptomatology, but the associated risk-benefit ratios with respect to neurodegenerative diseases remain controversial. The study aim was to determine the relation between menopausal hormone therapy and Alzheimer's disease, dementia, and Parkinson's disease in human subjects. A literature search was performed in PubMed/Medline, Cochrane collaboration, and Scopus databases from onset of the database to September 2019. Random-effects model was used to estimate pooled odd ratio (OR) and 95 % confidence intervals (CI). Subgroup analysis was performed based on the type and formulation of hormone. In addition, the time-response effect of this relationship was also assessed based on duration of hormone therapy. Associations between hormone therapy and Alzheimer's disease, dementia, and Parkinson's disease in menopausal women were reported in 28 studies. Pooled results with random effect model showed a significant association between hormone therapy and Alzheimer's disease (OR 1.08, 95 % CI 1.03-1.14, I2: 69 %). This relationship was more pronounced in patients receiving the combined estrogen-progestogen formulation. Moreover, a significant non-linear time-response association between hormone therapy and Alzheimer's disease was also identified (Coef1 = 0.0477, p1<0.001; Coef2 = -0.0932, p2<0.001). Similarly, pooled analysis revealed a significant association between hormone therapy and all-cause dementia (OR 1.16, 95 % CI 1.02-1.31, I2: 19 %). Interestingly, no comparable relationship was uncovered between hormone therapy as a whole and Parkinson's disease (OR 1.14, 95 % CI 0.95-1.38, I2: 65 %); however, sub-group analysis revealed a significant relationship between the disease and progestogen (OR 3.41, 95 % CI 1.23-9.46) or combined estrogen-progestogen formulation use (OR 1.49, 95 % CI 1.34-1.65). Indeed, this association was also found to be driven by duration of exposure (Coef1 = 0.0626, p1 = 0.04). This study reveals a significant direct relationship between the use of certain hormonal therapies and Alzheimer's disease, all-cause dementia, and Parkinson's disease in menopausal women. However, the association appears to shift in direct after five years in the context of Alzheimer's disease, adding further weight to the critical window or timing hypothesis of neurodegeneration and neuroprotection.
  7. Varkaneh Kord H, M Tinsley G, O Santos H, Zand H, Nazary A, Fatahi S, et al.
    Clin Nutr, 2021 04;40(4):1811-1821.
    PMID: 33158587 DOI: 10.1016/j.clnu.2020.10.034
    BACKGROUND & AIMS: Fasting and energy-restricted diets have been evaluated in several studies as a means of improving cardiometabolic biomarkers related to body fat loss. However, further investigation is required to understand potential alterations of leptin and adiponectin concentrations. Thus, we performed a systematic review and meta-analysis to derive a more precise estimate of the influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans, as well as to detect potential sources of heterogeneity in the available literature.

    METHODS: A comprehensive systematic search was performed in Web of Science, PubMed/MEDLINE, Cochrane, SCOPUS and Embase from inception until June 2019. All clinical trials investigating the effects of fasting and energy-restricted diets on leptin and adiponectin in adults were included.

    RESULTS: Twelve studies containing 17 arms and a total of 495 individuals (intervention = 249, control = 246) reported changes in serum leptin concentrations, and 10 studies containing 12 arms with a total of 438 individuals (intervention = 222, control = 216) reported changes in serum adiponectin concentrations. The combined effect sizes suggested a significant effect of fasting and energy-restricted diets on leptin concentrations (WMD: -3.690 ng/ml, 95% CI: -5.190, -2.190, p ≤ 0.001; I2 = 84.9%). However, no significant effect of fasting and energy-restricted diets on adiponectin concentrations was found (WMD: -159.520 ng/ml, 95% CI: -689.491, 370.451, p = 0.555; I2 = 74.2%). Stratified analyses showed that energy-restricted regimens significantly increased adiponectin (WMD: 554.129 ng/ml, 95% CI: 150.295, 957.964; I2 = 0.0%). In addition, subsequent subgroup analyses revealed that energy restriction, to ≤50% normal required daily energy intake, resulted in significantly reduced concentrations of leptin (WMD: -4.199 ng/ml, 95% CI: -7.279, -1.118; I2 = 83.9%) and significantly increased concentrations of adiponectin (WMD: 524.04 ng/ml, 95% CI: 115.618, 932.469: I2 = 0.0%).

    CONCLUSION: Fasting and energy-restricted diets elicit significant reductions in serum leptin concentrations. Increases in adiponectin may also be observed when energy intake is ≤50% of normal requirements, although limited data preclude definitive conclusions on this point.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links