Displaying all 2 publications

Abstract:
Sort:
  1. Azareh A, Rahmati O, Rafiei-Sardooi E, Sankey JB, Lee S, Shahabi H, et al.
    Sci Total Environ, 2019 Mar 10;655:684-696.
    PMID: 30476849 DOI: 10.1016/j.scitotenv.2018.11.235
    Gully erosion susceptibility mapping is a fundamental tool for land-use planning aimed at mitigating land degradation. However, the capabilities of some state-of-the-art data-mining models for developing accurate maps of gully erosion susceptibility have not yet been fully investigated. This study assessed and compared the performance of two different types of data-mining models for accurately mapping gully erosion susceptibility at a regional scale in Chavar, Ilam, Iran. The two methods evaluated were: Certainty Factor (CF), a bivariate statistical model; and Maximum Entropy (ME), an advanced machine learning model. Several geographic and environmental factors that can contribute to gully erosion were considered as predictor variables of gully erosion susceptibility. Based on an existing differential GPS survey inventory of gully erosion, a total of 63 eroded gullies were spatially randomly split in a 70:30 ratio for use in model calibration and validation, respectively. Accuracy assessments completed with the receiver operating characteristic curve method showed that the ME-based regional gully susceptibility map has an area under the curve (AUC) value of 88.6% whereas the CF-based map has an AUC of 81.8%. According to jackknife tests that were used to investigate the relative importance of predictor variables, aspect, distance to river, lithology and land use are the most influential factors for the spatial distribution of gully erosion susceptibility in this region of Iran. The gully erosion susceptibility maps produced in this study could be useful tools for land managers and engineers tasked with road development, urbanization and other future development.
  2. Rahmati O, Choubin B, Fathabadi A, Coulon F, Soltani E, Shahabi H, et al.
    Sci Total Environ, 2019 Oct 20;688:855-866.
    PMID: 31255823 DOI: 10.1016/j.scitotenv.2019.06.320
    Although estimating the uncertainty of models used for modelling nitrate contamination of groundwater is essential in groundwater management, it has been generally ignored. This issue motivates this research to explore the predictive uncertainty of machine-learning (ML) models in this field of study using two different residuals uncertainty methods: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Prediction-interval coverage probability (PICP), the most important of the statistical measures of uncertainty, was used to evaluate uncertainty. Additionally, three state-of-the-art ML models including support vector machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially model groundwater nitrate concentrations. The models were calibrated with nitrate concentrations from 80 wells (70% of the data) and then validated with nitrate concentrations from 34 wells (30% of the data). Both uncertainty and predictive performance criteria should be considered when comparing and selecting the best model. Results highlight that the kNN model is the best model because not only did it have the lowest uncertainty based on the PICP statistic in both the QR (0.94) and the UNEEC (in all clusters, 0.85-0.91) methods, but it also had predictive performance statistics (RMSE = 10.63, R2 = 0.71) that were relatively similar to RF (RMSE = 10.41, R2 = 0.72) and higher than SVM (RMSE = 13.28, R2 = 0.58). Determining the uncertainty of ML models used for spatially modelling groundwater-nitrate pollution enables managers to achieve better risk-based decision making and consequently increases the reliability and credibility of groundwater-nitrate predictions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links