A total of 60 products of traditional herbal medicine (THM) in various dosage forms of herbal preparation were analyzed to determine selected trace elements (i.e., Zn, Mn, Cu, Cd, and Se) using ICP-MS. Thirty types of both Chinese and Malay THMs were chosen to represent each population. The closed vessel acid microwave digestion method, using CEM MARS 5, was employed for the extraction of the selected trace elements. The digestion method applied was validated by using certified reference material from the Trace Element in Spinach Leaves (SRM1570a). The recoveries of all elements were found to be in the range of 85.3%-98.9%. The results indicated that Zn, Mn, Cu, Cd and Se have their own trends of concentrations in all samples studied. The daily intake concentrations of the elements were in the following order: Mn > Zn > Cu > Se > Cd. Concentrations of all five elements were found to be dominant in Chinese THMs. The essentiality of the selected trace elements was also assessed, based on the recommended daily allowance (RDA), adequate intake (AI) and the United States Pharmacopeia (USP) for trace elements as reference. The concentrations of all elements studied were below the RDA, AI and USP values, which fall within the essential concentration range, except for cadmium.
Novel solid-supported ionic liquid (Si-Sal-SSIL) was synthesized by immobilization of 1-methyl-3-(3-trimethoxysilylpropylimidazolium) salicylate [MTMSPI][Sal] ionic liquid onto the activated silica gel. First, the [MTMSPI][Sal] ionic liquid was derived from the reaction of a metathesis product of 1-methyl-3-(3-trimethoxysilylpropylimidazolium) chloride [MTMSPI][Cl] with sodium salicylate through an ion-exchanged reaction. [MTMSPI][Sal] was purified and characterized through ion-chromatography, CHN and Karl-Fischer titration analyses. Further characterizations on [MTMSPI][Sal] were carried out by 1H NMR and FTIR analyses. Si-Sal-SSIL was successfully prepared and confirmed through BET and solid-state NMR analyses. Si-Sal-SSIL showed better removal capacities towards Pb(ii) and Ni(ii) ions in comparison to native activated silica gel. Si-Sal-SSIL was then applied as solid adsorbent for an efficient removal of Pb(ii) and Ni(ii) from the aqueous solution. A series of batch sorption study were performed to explore the influence of parameters i.e., loading ratio of activated silica gel to [MTMSPI][Sal], pH, mixing time, initial concentration of analyte towards the adsorption of Pb(ii) and Ni(ii) ions onto Si-Sal-SSIL as a function of removal efficiency. Under optimized conditions, the sorption kinetics for removal of both metals agreed with pseudo-second order linear plots. The mechanism of Pb(ii) and Ni(ii) sorption by Si-Sal-SSIL gave good fits for Langmuir model.