The proteome data of whole rice grain is considerably limited particularly for rice with pigmentations such as black and red rice. Hence, we performed proteome analysis of two black rice varieties (BALI and Pulut Hitam 9), two red rice varieties (MRM16 and MRQ100) and two white rice varieties (MR297 and MRQ76) using label-free liquid chromatography Triple TOF 6600 tandem mass spectrometry (LC-MS/MS). Our aim was to profile and identify proteins related to nutritional (i.e. antioxidant, folate and low glycaemic index) and quality (i.e. aromatic) traits based on peptide-centric scoring from the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) approach. Both information dependent acquisition (IDA) and SWATH-MS run were performed in this analysis. Raw data was then processed using ProteinPilot software to identify and compare proteins from the six different varieties. In future, this proteomics data will be integrated with previously obtained genomics [1] and transcriptomics [2] data focusing on the above nutritional and quality traits, with an ultimate aim to develop a panel of functional biomarkers related to those traits for future rice breeding programme. The raw MS data of the pigmented and non-pigmented rice varieties have been deposited to ProteomeXchange database with accession number PXD018338.
Bacterial leaf blight (BLB) is one of the major rice diseases in Malaysia. This disease causes substantial yield loss as high as 70%. Development of rice varieties which inherited BLB resistant traits is a crucial approach to promote and sustain rice industry in Malaysia. Hence, this study aims were to enhance BLB disease resistant characters of high yielding commercial variety MR219 through backcross breeding approach with supporting tool of marker-assisted selection (MAS). Broad spectrum BLB resistance gene, Xa7 from donor parent IRBB7 were introgressed into the susceptible MR219 (recurrent parent) using two flanking markers ID7 and ID15. At BC3F4, we managed to generate 19 introgressed lines with homozygous Xa7 gene and showed resistant characteristics as donor parent when it was challenged with Xanthomonas oryzae pv. oryzae through artificial inoculation. Recurrent parent MR219 and control variety, MR263 were found to be severely infected by the disease. The improved lines exhibited similar morphological and yield performance characters as to the elite variety, MR219. Two lines, PB-2-107 and PB-2-34 were chosen to be potential lines because of their outstanding performances compared to parent, MR219. This study demonstrates a success story of MAS application in development of improved disease resistance lines of rice against BLB disease.