This study aims to investigate the effect of different vegetable oils and frying cycles on acrylamide formation during the intermittent frying of beef nuggets. Different vegetable oils, palm olein (PO), red palm olein (RPO), sunflower oil (SFO), and soybean oil (SBO), were used for a total of 80 frying cycles. Oil was collected at every 16th frying cycle and analyzed for peroxide value (PV), p-anisidine value (p-AV), free fatty acid (FFA), total polar compound (TPC), polar compound fractions, and fatty acid composition (FAC). Total oxidation (TOTOX) value was calculated, and acrylamide content was quantified in the nuggets. Regardless of the oil type, PV, p-AV, and TOTOX initially increased but gradually decreased. However, FFA and TPC continued to develop across the 80 frying cycles. The C18:2/C16:0 remained almost unchanged in PO and RPO but dropped progressively in SFO and SBO. The lowest acrylamide content in fried products was observed in the PO, while the highest content was observed in RPO. Bivariate correlation analysis showed no significant (p ≤ 0.05) correlation between oil quality attributes and acrylamide concentration. The oil type but not the frying cycle significantly affected the acrylamide concentration in beef nuggets.
Approximately 900 tonne of crude palm oil (CPO) underwent washing using 5 to 10% hot water (90 to 95°C) at a palm oil mill. The aim of the CPO washing was to eliminate and/or reduce total chlorine content present in the conventional CPO, as it is known as the main precursor for the formation of 3-monochloropropane-1, 2-diol esters (3-MCPDE). By a simple hot water washing, more than 85% of the total chlorine was removed. However, washing did not have significant (p > 0.05) effect on other oil quality parameters such as the deterioration of bleachability index (DOBI), free fatty acid (FFA) content and diacylglycerol (DAG) content of the oil. The latter has been established as the main precursor for glycidyl esters (GE) formation. The treated CPO was then transported using tankers and further refined at a commercial refinery. Refining of washed CPO resulted in significantly (p < 0.05) lower formation of 3-MCPDE, but GE content remained slightly high. Post-treatment of refined oil significantly reduced the GE content (p < 0.05) to an acceptable level whilst almost maintaining the low 3-MCPDE level. The study has proven that water washing of CPO prior to refining and subsequent post-refining is so far the most effective way to produce good quality refined oil with considerably low 3-MCPDE and GE contents. Dry fractionation of refined palm oil showed these contaminants partitioned more into the liquid olein fraction compared to the stearin fraction.