Displaying all 3 publications

Abstract:
Sort:
  1. Razali WA, Sreenivasan VK, Bradac C, Connor M, Goldys EM, Zvyagin AV
    J Biophotonics, 2016 08;9(8):848-58.
    PMID: 27264934 DOI: 10.1002/jbio.201600050
    Fluorescence microscopy is a fundamental technique for the life sciences, where biocompatible and photostable photoluminescence probes in combination with fast and sensitive imaging systems are continually transforming this field. A wide-field time-gated photoluminescence microscopy system customised for ultrasensitive imaging of unique nanoruby probes with long photoluminescence lifetime is described. The detection sensitivity derived from the long photoluminescence lifetime of the nanoruby makes it possible to discriminate signals from unwanted autofluorescence background and laser backscatter by employing a time-gated image acquisition mode. This mode enabled several-fold improvement of the photoluminescence imaging contrast of discrete nanorubies dispersed on a coverslip. It enabled recovery of the photoluminescence signal emanating from discrete nanorubies when covered by a layer of an organic fluorescent dye, which were otherwise invisible without the use of spectral filtering approaches. Time-gated imaging also facilitated high sensitivity detection of nanorubies in a biological environment of cultured cells. Finally, we monitor the binding kinetics of nanorubies to a functionalised substrate, which exemplified a real-time assay in biological fluids. 3D-pseudo colour images of nanorubies immersed in a highly fluorescent dye solution. Nanoruby photoluminescence is subdued by that of the dye in continuous excitation/imaging (left), however it can be recovered by time-gated imaging (right). At the bottom is schematic diagram of nanoruby assay in a biological fluid.
  2. Clement S, Gardner B, W Razali WA, Coleman V, Jämting Å, Catchpoole H, et al.
    Nanotechnology, 2017 Sep 19.
    PMID: 28925376 DOI: 10.1088/1361-6528/aa8d89
    The estimation of nanoparticle number concentration in colloidal suspensions is a prerequisite in many procedures, and in particular in multi-stage, low-yield reactions. Here, we describe a rapid, non-destructive method based on optical extinction and dynamic light scattering, which combines measurements using common bench-top instrumentation with a numerical algorithm to calculate the particle size distribution and concentration. These quantities were derived from Mie theory applied to measurements of the optical extinction spectrum of homogeneous, non-absorbing nanoparticles, and the relative particle size distribution of a colloidal suspension. The work presents an approach to account for particle size distributions achieved by dynamic light scattering which, due to the underlying model, may not be representative of the true sample particle size distribution. The presented approach estimates the absolute particle number concentration of samples with mono-, bi-modal and broad size distributions with <50% precision. This provides a convenient and practical solution for number concentration estimation required during many applications of colloidal nanomaterials.
  3. Wan Mahari WA, Wan Razali WA, Manan H, Hersi MA, Ishak SD, Cheah W, et al.
    Bioresour Technol, 2022 Nov;364:128085.
    PMID: 36220529 DOI: 10.1016/j.biortech.2022.128085
    Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links