Displaying all 2 publications

Abstract:
Sort:
  1. Saleh S, Jamaluddin MH, Razzaz F, Saeed SM
    Micromachines (Basel), 2022 Nov 18;13(11).
    PMID: 36422442 DOI: 10.3390/mi13112013
    In this study, at two different fifth generation (5G) low-frequency bands (3.7-4.2 GHz and 5.975-7.125 GHz) and based on nonuniform transmission lines (NTLs) theory, a compact three-quarter-wave resonators interdigital bandpass filter (IBPF) is analyzed, designed, and fabricated. The compact proposed filter is considered as a good candidate for reconfigurable 5G low-frequency bands and ultrawide band (UWB) antenna, which will reduce the size of the final RF communication system. Firstly, a uniform transmission line (UTL) IBPF at these two bands is designed and tested; then the NTL concept is applied for compactness. For both UTL and NTL IBPFs, different parametric studies are performed for optimization. At the first frequency band, size reductions of 16.88% and 16.83% are achieved in the first (symmetrical to the third resonator) and second λ/4 resonator of UTL IBPF, respectively, with up to 36.6% reduction in the total area. However, 16.46% and 16.33% size reductions are obtained in the first (symmetrical to the third resonator) and second λ/4 resonator, respectively, at the second frequency band with a 40.53% reduction in the whole circuit area. The performance of the proposed NTL IBPF is compared with the UTL IBPF. The measured reflection coefficient of the proposed NTL IBPF, S11, appears to be less than -10.53 dB and -11.27 dB through 3.7-4.25 GHz and 5.94-7.67 GHz, respectively. However, the transmission coefficient, S12 is around -0.86 dB and-1.7 dB at the center frequencies, fc = 3.98 GHz and 6.81 GHz, respectively. In this study, simulations are carried out using high-frequency structure simulator (HFSS) software based on the finite element method (FEM). The validity of the proposed theoretical schematic of this filter is proved by design simulations and measured results of its prototype.
  2. Saeidi T, Saleh S, Mahmood SN, Timmons N, Al-Gburi AJA, Karamzadeh S, et al.
    Heliyon, 2024 Jun 30;10(12):e33024.
    PMID: 38994104 DOI: 10.1016/j.heliyon.2024.e33024
    A miniaturized, multi-band, four-port wearable Multiple Input Multiple Output (MIMO) antenna is proposed, which contains a leaky wave textile antenna (LWTA) on denim (εr = 1.6, tanδ = 0.006) as substrate and Shieldit Super Fabric as conductor textile. The concept in this work involves incorporating the metal and plastic zipper into the garment to function as an antenna worn on the body. Simulations and measurements have been conducted to explore this idea. The LWTA has dimensions of 40 × 30 × 1 mm³. Every two ports are separated by a zipper with two different kinds of materials: Acetal Polymer Plastic (APP) and 90 % brass to improve the isolation, gain, and Impedance bandwidth. The antenna operates in the frequency ranges covering the L, C, S, and X bands. Additionally, diversity performance is evaluated using the Envelope Correlation Coefficient (ECC) and diversity gain (DG). Simulation and measurement findings agree well, with a maximum gain of 12.15 dBi, low Specific Absorption Rate (SAR) based on the standards, DG greater than 9.65 dB, circular polarization (CP), and strong isolation (
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links