METHODS: A total of 322 samples of mainly human origin were analysed using eight protocols, applying a wide variety of laboratory components. Several samples (60% of human specimens) were processed using different protocols. In total, 712 sequencing libraries were investigated for viral sequence contamination.
RESULTS: Among sequences showing similarity to viruses, 493 were significantly associated with the use of laboratory components. Each of these viral sequences had sporadic appearance, only being identified in a subset of the samples treated with the linked laboratory component, and some were not identified in the non-template control samples. Remarkably, more than 65% of all viral sequences identified were within viral clusters linked to the use of laboratory components.
CONCLUSIONS: We show that high prevalence of contaminating viral sequences can be expected in HTS-based virome data and provide an extensive list of novel contaminating viral sequences that can be used for evaluation of viral findings in future virome and metagenome studies. Moreover, we show that detection can be problematic due to stochastic appearance and limited non-template controls. Although the exact origin of these viral sequences requires further research, our results support laboratory-component-linked viral sequence contamination of both biological and synthetic origin.
METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads.
RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found.
CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.