MATERIALS AND METHODS: Phytochemistry and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds in MLE. Chemistry screening and interaction, absorption, distribution, metabolism, and excretion (ADME), molecular docking simulation, and visualization of MLE active compounds as anti-inflammatory, antioxidant, and antibacterial were investigated in silico The inhibition zone of MLE against Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) as periodontopathogenic bacterias was performed by diffusion method. Doxycycline 100 mg was used as a positive control, as a treatment group, there were five groups, namely 0%, 25%, 50%, 75%, and 100% MLE.
RESULTS: Alkaloid, saponin, flavonoid, triterpenoid, steroid, tannin, and quinone were detected in MLE. A high concentration of (-)epicatechin and coumaric acid (CA) were found in MLE. MLE in 100% concentration has the most effective ability to inhibit Fn, Pg, Aa growth in vitro. (-)-Epicatechin has a higher negative binding affinity than CA that can enhance heat shock protein (HSP)-30, HSP-70, HSP-90, interleukin-10, and FOXP3 and also inhibit interleukin-6, peptidoglycan, flagellin, and dectin in silico.
CONCLUSION: MLE of A. corniculatum has antioxidant, anti-inflammatory, and antibacterial activities that can be a potential raw material for developing a herbal-based mouthwash.
MATERIALS: AND METHODS: Absorption, distribution, metabolism, excretion and toxicity prediction, molecular docking simulation, and visualization of chlorogenic acid (CGA) and coumaric acid (CA) as anti-inflammatory, antioxidant, and antibacterial were investigated in silico. Inhibition zone by diffusion method, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of RGCBE extract against Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Fusobacterium nucleatum (Fn), and Prevotella intermedia (Pi) were done.
STATISTICAL ANALYSIS: the analysis of variance (ANOVA) difference test, and the post-hoc Tukey's Honest Significant Different (HSD) with a different significance value of p<0.05 RESULTS: GCA and CA compounds are good drug molecules and it has low toxicity. Chlorogenic acid have higher binding activity than coumaric acid to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, receptor activation NF-κB (RANK) and its ligand (RANKL), interleukin (IL)-6, IL-10, runt related transcription factor (RUNX2), receptor activator nuclear Kappa beta Ligand-osteoprotegrin osteocalcin (RANKL-OPG), osteocalcin, nuclear factor associated T-cell 1 (NFATc1), tartate resistant acid phosphatase (TRAP), peptidoglycan, flagellin, dectin, Hsp70, and Hsp10 protein. RGCB ethanol extract has high antioxidant ability and it has MIC, MBC, and inhibit the growth of Aa, Pg, Fn, and Pi at 50% concentration with significantly different (p=0.0001 and<0.05).
CONCLUSION: RGCB ethanol extract has high antioxidant ability and 50% RGCB ethanol extract may act as strong anti-peri-implantitis bacteria in vitro. In addition, CGA in RGCB potential as antioxidant, antibacterial, anti-inflammatory, antibone resorption, and proosteogenic in silico.